SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lapierre Jean Francois) srt2:(2017)"

Sökning: WFRF:(Lapierre Jean Francois) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Panneer Selvam, Balathandayuthabani, et al. (författare)
  • Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming can substantially affect the export of dissolved organic carbon (DOC) from peat-permafrost to aquatic systems. The direct degradability of such peat-derived DOC, however, is poorly constrained because previous permafrost thaw studies have mainly addressed mineral soil catchments or DOC pools that have already been processed in surface waters. We incubated peat cores from a palsa mire to compare an active layer and an experimentally thawed permafrost layer with regard to DOC composition and degradation potentials of pore water DOC. Our results show that DOC from the thawed permafrost layer had high initial degradation potentials compared with DOC from the active layer. In fact, the DOC that showed the highest bio- and photo-degradability, respectively, originated in the thawed permafrost layer. Our study sheds new light on the DOC composition of peat-permafrost directly upon thaw and suggests that past estimates of carbon-dioxide emissions from thawed peat permafrost may be biased as they have overlooked the initial mineralization potential of the exported DOC.
  •  
2.
  • Lapierre, Jean-Francois, et al. (författare)
  • Continental-scale variation in controls of summer CO2 in United States lakes
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : AMER GEOPHYSICL UNION. - 2169-8953 .- 2169-8961. ; 122:4, s. 875-885
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the broad-scale response of lake CO2 dynamics to global change is challenging because the relative importance of different controls of surface water CO2 is not known across broad geographic extents. Using geostatistical analyses of 1080 lakes in the conterminous United States, we found that lake partial pressure of CO2 (pCO(2)) was controlled by different chemical and biological factors related to inputs and losses of CO2 along climate, topography, geomorphology, and land use gradients. Despite weak spatial patterns in pCO(2) across the study extent, there were strong regional patterns in the pCO(2) driver-response relationships, i.e., in pCO(2) regulation. Because relationships between lake CO2 and its predictors varied spatially, global models performed poorly in explaining the variability in CO2 for U.S. lakes. The geographically varying driver-response relationships of lake pCO(2) reflected major landscape gradients across the study extent and pointed to the importance of regional-scale variation in pCO(2) regulation. These results indicate a higher level of organization for these physically disconnected systems than previously thought and suggest that changes in climate and land use could induce shifts in the main pathways that determine the role of lakes as sources and sinks of atmospheric CO2. Plain Language Summary In this study we show that changes in climate and terrestrial landscapes could affect which are the main mechanisms responsible for the widespread emissions of CO2 by lakes. Although mechanisms such as aquatic primary production, respiration by microorganisms, or terrestrial loadings of carbon have been studied extensively, their relative importance across broad geographic extents with different climate or land use remains unknown. Based on an analysis of 1080 lakes distributed across the continental U.S., we show that lake CO2 dynamics depend on the climate and landscape context where these lakes are found, such as precipitation, elevation, percent agriculture, or wetlands in the lakes catchments. We observed a widespread effect of in-lake primary production, while the color of water, which has often been identified as one of the main controls of lake CO2 in northern lakes, was important in only a small fraction of the lakes studied. Our results show that controls on lake CO2 dynamics vary geographically and that considering that variation will be important for creating accurate global carbon models.
  •  
3.
  • Soranno, Patricia A., et al. (författare)
  • LAGOS-NE : A multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes
  • 2017
  • Ingår i: GigaScience. - : Oxford University Press (OUP). - 2047-217X. ; 6:12, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 datamodules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situmeasurements of lake water quality for a subset of the lakes fromthe past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from87 lake water quality data sets fromfederal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest andmost comprehensive databases of its type because it includes both in situmeasurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy