SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lardo S.) srt2:(2021)"

Sökning: WFRF:(Lardo S.) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Heiter, Ulrike, et al. (författare)
  • Atomic data for the Gaia-ESO Survey
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We describe the atomic and molecular data that were used for the abundance analyses of FGK-type stars carried out within the Gaia-ESO Public Spectroscopic Survey in the years 2012 to 2019. The Gaia-ESO Survey is one among several current and future stellar spectroscopic surveys producing abundances for Milky-Way stars on an industrial scale.Aims. We present an unprecedented effort to create a homogeneous common line list, which was used by several abundance analysis groups using different radiative transfer codes to calculate synthetic spectra and equivalent widths. The atomic data are accompanied by quality indicators and detailed references to the sources. The atomic and molecular data are made publicly available at the CDS.Methods. In general, experimental transition probabilities were preferred but theoretical values were also used. Astrophysical gf-values were avoided due to the model-dependence of such a procedure. For elements whose lines are significantly affected by a hyperfine structure or isotopic splitting, a concerted effort has been made to collate the necessary data for the individual line components. Synthetic stellar spectra calculated for the Sun and Arcturus were used to assess the blending properties of the lines. We also performed adetailed investigation of available data for line broadening due to collisions with neutral hydrogen atoms.Results. Among a subset of over 1300 lines of 35 elements in the wavelength ranges from 475 to 685 nm and from 850 to 895 nm, we identified about 200 lines of 24 species which have accurate gf-values and are free of blends in the spectra of the Sun and Arcturus. For the broadening due to collisions with neutral hydrogen, we recommend data based on Anstee-Barklem-O'Mara theory, where possible. We recommend avoiding lines of neutral species for which these are not available. Theoretical broadening data by R.L. Kurucz should be used for ScII, TiII, and YII lines; additionally, for ionised rare-earth species, the Unsold approximation with an enhancement factor of 1.5 for the line width can be used.Conclusions. The line list has proven to be a useful tool for abundance determinations based on the spectra obtained within the Gaia-ESO Survey, as well as other spectroscopic projects. Accuracies below 0.2 dex are regularly achieved, where part of the uncertainties are due to differences in the employed analysis methods. Desirable improvements in atomic data were identified for a number of species, most importantly AlI, SI, and CrII, but also NaI, SiI, CaII, and NiI.
  •  
2.
  • Kielty, Collin L., et al. (författare)
  • The Pristine survey - XII. Gemini-GRACES chemo-dynamical study of newly discovered extremely metal-poor stars in the Galaxy
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:1, s. 1438-1461
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution optical spectra of 30 metal-poor stars selected from the Pristine survey are presented, based on observations taken with the Gemini Observatory GRACES spectrograph. Stellar parameters Teff and log g are determined using a Gaia DR2 colour–temperature calibration and surface gravity from the Stefan–Boltzmann equation. GRACES spectra are used to determine chemical abundances (or upper limits) for 20 elements (Li, O, Na, Mg, K, Ca, Ti, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). These stars are confirmed to be metal-poor ([Fe/H] < −2.5), with higher precision than from earlier medium-resolution analyses. The chemistry for most targets is similar to other extremely metal-poor stars in the Galactic halo. Three stars near [Fe/H] = −3.0 have unusually low Ca and high Mg, suggestive of contributions from few SN II where alpha-element formation through hydrostatic nucleosynthesis was more efficient. Three new carbon-enhanced metal-poor (CEMP) stars are also identified (two CEMP-s and one potential CEMP-no star) when our chemical abundances are combined with carbon from previous medium-resolution analyses. The GRACES spectra also provide precision radial velocities (σRV ≤ 0.2 km s−1) for dynamical orbit calculations with the Gaia DR2 proper motions. Most of our targets are dynamically associated with the Galactic halo; however, five stars with [Fe/H] < −3 have planar-like orbits, including one retrograde star. Another five stars are dynamically consistent with the Gaia-Sequoia accretion event; three have typical halo [α/Fe] ratios for their metallicities, whereas two are [Mg/Fe]-deficient, and one is a new CEMP-s candidate. These results are discussed in terms of the formation and early chemical evolution of the Galaxy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy