SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsen Søren Professor) srt2:(2015-2018)"

Sökning: WFRF:(Larsen Søren Professor) > (2015-2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnqvist, Johan, 1985- (författare)
  • Mean Wind and Turbulence Conditions in the Boundary Layer above Forests
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As wind turbines have grown, new installation areas become possible. Placing wind turbines in forested landscapes introduce uncertainties to the wind resource estimation. Even though close-to-canopy processes have been studied intensively during the last thirty years, the focus has mostly been on exchange processes and the height span of the studies has been below the rotor of a modern wind turbine.This thesis contains analysis of new measurements from a 138 m high tower in a forested landscape. The previous knowledge of near-canopy processes is extended to the region above the roughness sublayer. It is shown that above the roughness sublayer, the surface layer behaves as over low vegetation, and Monin-Obukhov similarity is shown to hold for several variables. However, in stable stratification, effects that could be linked to the boundary layer depth are shown to be present in the measurements. These include wind turning with height, the behaviour of the turbulence length scale and the curvature of the wind profile.Two new analytical models are presented in the thesis. One is a flux-profile expression in the roughness sublayer, which allows for analytical integration of the wind gradient. The model suggests that the roughness-sublayer effect depends on stratification and that the aerodynamic roughness length changes with stability. A decrease of roughness length in stable stratification is confirmed with a new method to determine the roughness length using measurements from the 138 m tower.The other model determines the spectral tensor in stable stratification using analytical solution to the rapid distortion equations for stratified shear flow, with homogeneous stratification and shear. By using a formulation for the integration time of the distortions of an isotropic spectrum, a model is derived which provides the cross spectra of velocity and temperature at any two given points in space.Finally the existence of waves in the wind over forests is investigated and it is concluded that the Kelvin-Helmholtz instability can create waves which are coherent in time and exist over the entire height span of wind turbine rotors. Linear wave theory is shown to be able to explain certain features of the waves.
  •  
2.
  • Svensson, Nina, 1988- (författare)
  • Mesoscale Processes over the Baltic Sea
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The objective of this thesis is to study mesoscale processes above the Baltic Sea, which is a small, semi-enclosed sea where land-sea interaction may have a large impact on the offshore conditions. It is only the last tens of years that offshore research has become more popular, and one reason for this is the increasing offshore wind energy, which poses the need for accurate estimates of wind speed and turbulence conditions in the marine environment. In this thesis a range of mesoscale processes over the Baltic Sea are studied using the mesoscale model WRF (Weather Research and Forecasting) and different types of measurements.It is found that mesoscale effects are largest during spring and summer, when stable conditions dominate. The whole Baltic sea surface is affected by warm-air advection and low-level jets. There is very little spatial variation in seasonally averaged fields, which shows that the extent of mesoscale effects is several hundred kilometres. Wind speed and temperature profiles can thus not be described solely by the local conditions even far out over sea surface. Sea breezes are relatively unimportant for modyfing the seasonally averaged wind fields, but other types of low-level jets have a large influence. Results show that most of the low-level jets are likely created by inertial oscillations initiated when air flows across a coastline from the convective land surface to stable sea surface.Evaluation of the model shows that the discrepancies are largest during very stable conditions, but are also quite large during very unstable. The reasons for this are discussed.Several cases of boundary layer rolls are investigated using measurements and simulations and it is found that the rolls are likely created over the convective mainland and advected out over the stable sea surface, which may be a new finding that has not been reported before.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy