SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lasic S.) "

Search: WFRF:(Lasic S.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lundell, H., et al. (author)
  • Multidimensional diffusion MRI with spectrally modulated gradients reveals unprecedented microstructural detail
  • 2019
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Characterization of porous media is essential in a wide range of biomedical and industrial applications. Microstructural features can be probed non-invasively by diffusion magnetic resonance imaging (dMRI). However, diffusion encoding in conventional dMRI may yield similar signatures for very different microstructures, which represents a significant limitation for disentangling individual microstructural features in heterogeneous materials. To solve this problem, we propose an augmented multidimensional diffusion encoding (MDE) framework, which unlocks a novel encoding dimension to assess time-dependent diffusion specific to structures with different microscopic anisotropies. Our approach relies on spectral analysis of complex but experimentally efficient MDE waveforms. Two independent contrasts to differentiate features such as cell shape and size can be generated directly by signal subtraction from only three types of measurements. Analytical calculations and simulations support our experimental observations. Proof-of-concept experiments were applied on samples with known and distinctly different microstructures. We further demonstrate substantially different contrasts in different tissue types of a post mortem brain. Our simultaneous assessment of restriction size and shape may be instrumental in studies of a wide range of porous materials, enable new insights into the microstructure of biological tissues or be of great value in diagnostics.
  •  
2.
  • Palmgren, Madelene, et al. (author)
  • Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins
  • 2017
  • In: Journal of Membrane Biology. - : Springer Science and Business Media LLC. - 0022-2631 .- 1432-1424. ; 250:6, s. 629-639
  • Journal article (peer-reviewed)abstract
    • Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.
  •  
3.
  • Wilhelmsson, Ulrika, 1970, et al. (author)
  • Nestin Regulates Neurogenesis in Mice Through Notch Signaling From Astrocytes to Neural Stem Cells
  • 2019
  • In: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 29:10, s. 4050-4066
  • Journal article (peer-reviewed)abstract
    • The intermediate filament (nanofilament) protein nestin is a marker of neural stem cells, but its role in neurogenesis, including adult neurogenesis, remains unclear. Here, we investigated the role of nestin in neurogenesis in adult nestin-deficient (Nes(-/-)) mice. We found that the proliferation of Nes(-/-) neural stem cells was not altered, but neurogenesis in the hippocampal dentate gyrus of Nes(-/-) mice was increased. Surprisingly, the proneurogenic effect of nestin deficiency was mediated by its function in the astrocyte niche. Through its role in Notch signaling from astrocytes to neural stem cells, nestin negatively regulates neuronal differentiation and survival; however, its expression in neural stem cells is not required for normal neurogenesis. In behavioral studies, nestin deficiency in mice did not affect associative learning but was associated with impaired long-term memory.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view