SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laury John) srt2:(2017)"

Sökning: WFRF:(Laury John) > (2017)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Lars, et al. (författare)
  • AC cables strengthening railway low frequency AC power supplysystems
  • 2017
  • Ingår i: ASME/IEEE 2017 Joint Rail Conference. - : ASME Press. - 9780791850718
  • Konferensbidrag (refereegranskat)abstract
    • In present-day railway power supply systems using an AC frequency lower than the one in the public power system of 50/60 Hz, high voltage overhead transmission lines are used as one measure of strengthening the railway power supply system grids. This option may be economically beneficial, compared to strengthening the grid purely by increasing the density of converter stations or increasing the cross section areas of the overhead catenary wires. High voltage AC transmission lines in the railway power supply system allow larger distances between converter stations than would otherwise be possible for a given amount of train traffic. Moreover, the introduction of AC transmission lines implies reduced line losses and reduced voltage level fluctuations at the catenary for a given amount of train traffic. However, due to the increased public and government resistance for additional overhead high voltage AC transmission lines in general, different alternatives will be needed for the future improvements and strengthening of railway power systems. For a more sustainable transport sector, the share and amount of railway traffic needs to increase, in which case such a strengthening becomes inevitable. Earlier, usage of VSC-HVDC transmission cables has been proposed as one alternative to overhead AC transmission lines. One of the main benefits with VSC-HVDC transmission is that control of power flows in the railway power systems is easier and that less converter capacity may be needed. Technically, VSC-HVDC transmission for railway power systems is a competitive solution as it offers a large variety of control options. However, there might be other more economical alternatives reducing the overall impedance in the railway power system. In public power systems with the frequency of 50/60 Hz, an excess of reactive power production in lowly utilized cables imposes an obstacle in replacing overhead transmission lines with cables. In low frequency AC railway power system, the capacitive properties are less significant allowing longer cables compared to 50/60 Hz power systems. Moreover, in converter-fed railways, some kind of reactive compensation will automatically be applied during low-load. At each converter station, voltage control is already present following the railway operation tradition. Therefore, in this paper, we propose AC cables as a measure of strengthening low-frequency AC railway power systems. The paper compares the electrical performances of two alternative reinforcement cable solutions with the base case of no reinforcement. The options of disconnecting or toggling the cables at low load as well as the automatic reactive compensation by converter voltage control are considered. Losses and voltage levels are compared for the different solutions. Investment costs and other relevant issues are discussed.
  •  
2.
  • Laury, John, et al. (författare)
  • Modified voltage control law for low frequency railway power systems
  • 2017
  • Ingår i: Proceedings of the 2017 IEEE/ASME Joint Rail Conference. - : ASME Press.
  • Konferensbidrag (refereegranskat)abstract
    • In today's Swedish and Norwegian low frequency railway power system the voltage at a converter is controlled such that its voltage will drop with increased reactive power output. However, for low frequency railways the influence of active power on voltage is larger compared to public power systems and alternative methods are interesting to investigate. This paper presents a modified voltage control law for increased load sharing between converter stations and reduce the risk for converter overload in low frequency railways power systems. The modified voltage control law is derived mathematically and tested with different droops for two case studies. The results confirms the increased load sharing between the converter stations. The results are analysed and discussed; ideas are presented to counteract some of the negative impacts of the modified voltage control law
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
konferensbidrag (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Bollen, Math (2)
Abrahamsson, Lars (2)
Laury, John (2)
Serrano Jimenez, Dan ... (1)
Lärosäte
Luleå tekniska universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy