SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lavasani Shahram) srt2:(2005-2009)"

Sökning: WFRF:(Lavasani Shahram) > (2005-2009)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asaduzzaman, Muhammad, et al. (författare)
  • LFA-1 AND MAC-1 MEDIATE PULMONARY RECRUITMENT OF NEUTROPHILS AND TISSUE DAMAGE IN ABDOMINAL SEPSIS.
  • 2008
  • Ingår i: Shock. - : Ovid Technologies (Wolters Kluwer Health). - 1540-0514 .- 1073-2322. ; 30, s. 254-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil-mediated lung damage is an insidious feature in septic patients, although the adhesive mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of the present study was to define the role of lymphocyte function-antigen 1 (LFA-1) and membrane-activated complex 1 (Mac-1) in septic lung injury. Pulmonary edema, bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, and CXC chemokines were determined after cecal ligation and puncture (CLP). Mice were treated with monoclonal antibodies directed against LFA-1 and Mac-1 before CLP induction. Cecal ligation and puncture induced clear-cut pulmonary damage characterized by edema formation, neutrophil infiltration, and increased levels of CXC chemokines in the lung. Notably, immunoneutralization of LFA-1 or Mac-1 decreased CLP-induced neutrophil recruitment in the bronchoalveolar space by more than 64%. Moreover, functional inhibition of LFA-1 and Mac-1 abolished CLP-induced lung damage and edema. However, formation of CXC chemokines in the lung was intact in mice pretreated with the anti-LFA-1 and anti-Mac-1 antibodies. Our data demonstrate that both LFA-1 and Mac-1 regulate pulmonary infiltration of neutrophils and lung edema associated with abdominal sepsis. Thus, these novel findings suggest that LFA-1 or Mac-1 may serve as targets to protect against lung injury in polymicrobial sepsis.
  •  
2.
  • Dold, Stefan, et al. (författare)
  • Cholestatic liver damage is mediated by lymphocyte function antigen-1-dependent recruitment of leukocytes.
  • 2008
  • Ingår i: Surgery. - : Elsevier BV. - 1532-7361 .- 0039-6060. ; 144:3, s. 385-393
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The role of specific adhesion molecules in cholestasis-induced leukocyte recruitment in the liver is not known. Therefore, the aim of our experimental study was to evaluate the role of lymphocyte function antigen-1 (LFA-1) in cholestatic liver injury. METHODS: C57BL/6 mice underwent bile duct ligation for 12 hours. Mice were pretreated with an anti-LFA-1 antibody or control antibody. Subsequently, hepatic accumulation of leukocytes and sinusoidal perfusion were determined by means of intravital fluorescence microscopy. Hepatocellular damage was monitored by measuring serum levels of alanine aminotransferase and aspartate aminotransferase. CXC chemokines in the liver were determined by enzyme-linked immunosorbent assay. RESULTS: Bile duct ligation provoked clear-cut recruitment of leukocytes and liver damage, as indicated by increased serum activities of liver enzymes and sinusoidal perfusion failure. Neutrophils expressed greater levels of LFA-1 and inhibition of LFA-1 significantly decreased serum activity of alanine aminotransferase and aspartate aminotransferase levels in cholestatic mice. Immunoneutralization of LFA-1 reduced leukocyte adhesion in postsinusoidal venules that had been induced by bile duct ligation, whereas leukocyte rolling and sinusoidal accumulation were not changed. Moreover, blocking LFA-1 function restored sinusoidal perfusion in cholestatic animals. CONCLUSION: These findings demonstrate an important role of LFA-1 in supporting cholestasis-induced leukocyte recruitment in the liver. Thus, targeting LFA-1 may help to protect against pathologic inflammation and liver damage in cholestatic liver diseases.
  •  
3.
  • Dold, Stefan, et al. (författare)
  • Simvastatin protects against cholestasis-induced liver injury.
  • 2009
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 156, s. 466-474
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bile duct obstruction is associated with hepatic accumulation of leukocytes and liver injury. The aim of this study was to evaluate the effect of simvastatin on cholestasis-induced liver inflammation and tissue damage. Experimental approach: C57BL/6 mice were treated with simvastatin (0.02 and 0.2 mg.kg(-1)) and vehicle before and after undergoing bile duct ligation (BDL) for 12 h. Leukocyte recruitment and microvascular perfusion in the liver were analysed using intravital fluorescence microscopy. CXC chemokines in the liver were determined by enzyme-linked immunosorbent assay. Liver damage was monitored by measuring serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Hepatic levels of myeloperoxidase (MPO) were also determined. Key results: Administration of 0.2 mg.kg(-1) simvastatin decreased ALT and AST by 87% and 83%, respectively, in BDL mice. This dose of simvastatin reduced hepatic formation of CXC chemokines by 37-82% and restored sinusoidal perfusion in cholestatic animals. Moreover, BDL-induced leukocyte adhesion in sinusoids and postsinusoidal venules, as well as MPO levels in the liver, was significantly reduced by simvastatin. Notably, administration of 0.2 mg.kg(-1) simvastatin 2 h after BDL induction also decreased cholestatic liver injury and inflammation. Conclusions and implications: These findings show that simvastatin protects against BDL-induced liver injury. The hepatoprotective effect of simvastatin is mediated, at least in part, by reduced formation of CXC chemokines and leukocyte recruitment. Thus, our novel data suggest that the use of statins may be an effective strategy to protect against the hepatic injury associated with obstructive jaundice.
  •  
4.
  • Lavasani, Shahram, et al. (författare)
  • Monoclonal Antibody against T-Cell Receptor alphabeta Induces Self-Tolerance in Chronic Experimental Autoimmune Encephalomyelitis.
  • 2007
  • Ingår i: Scandinavian Journal of Immunology. - : Wiley. - 1365-3083 .- 0300-9475. ; 65:1, s. 39-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The therapeutic effect of monoclonal antibody (H57-597 MoAb) against T-cell receptor (TCR) alpha beta has been investigated on MOG(35-55)-induced experimental autoimmune encephalomyelitis (EAE), as a model system for T-cell-mediated chronic inflammation in the central nervous system (CNS). Short-term administration of the anti-TCR alpha beta immediately after immunization protected the mice from EAE. Furthermore, anti-TCR alpha beta treatment on an established disease restored the self-tolerance which led to a complete remission of EAE and a dramatic reduction of inflammatory cells in the CNS, while treatment with control antibody (hamster IgG) was ineffective. The remission was durable and not associated with disappearance of autoreactive T cells as measured by persistence of MOG-reactive T-cell proliferation in vitro. However, MOG-reactive T cells from anti-TCR-treated animals produced significantly lower amounts of inflammatory TNF-alpha and IFN-gamma. In addition, while a transient deletion of CD4(+) and CD8(+) T cells was observed, a population of T cells expressing CD3, NK1.1 and CD69 (NKT cells) were expanding. By transfer of spleen cells from anti-TCR MoAb-treated animals, we could show that the tolerogenic capacity can be transferred to untreated recipients with EAE. The data indicate therapeutic effect of anti-TCR alpha beta MoAb (H57-597), which represents a promising approach in treatment of T-cell-mediated autoimmune diseases.
  •  
5.
  • Lavasani, Shahram (författare)
  • Novel Immunotherapies and Immunoregulation in a Chronic Inflammatory Disease of the Central Nervous System
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Multiple sclerosis (MS) is a chronic inflammatory disease of central nervous system (CNS) which is thought to arise from a breakdown of immunological tolerance in CD4 cells. The aim of this thesis is to improve our understanding of regulation mechanisms of T cell-dependent chronic inflammation in the CNS and explore ways to overcome the onset and progression of the disease, which can be an important step forward in the treatment of MS. We have utilized the Experimental Autoimmune Encephalomyelitis (EAE), as a mouse model for MS. Chronic EAE was induced by immunization with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide. MOG-reactive inflammatory CD4+ T cells infiltrate the CNS and, in concert with other mononuclear cells, cause inflammation and progressive paralysis. The focus of the first study was to evaluate the immunoregulatory role of CD1d-restricted T cells by using CD1d deficient mice. Our results suggest a regulatory role of CD1d-restricted T cells in EAE. This regulation functions through limiting the autoreactive T cell cytokine responses and enhancing TGF-beta1 production in the CNS. In another study, we investigated the therapeutic potential of monoclonal antibody (H57-597 mAb) against the T cell receptor (TCR) alpha/beta. We demonstrated that short term administration of anti-TCR alpha/beta can protect mice from EAE and is tolerogenic in established chronic EAE. We concluded that treatment with anti-TCR alpha/beta restores self-tolerance through a transient deletion of T cells including the autoreactive populations and a selective expansion of regulatory NKT cells. Finally, we evaluated the immunosuppressive potential of various probiotic bacteria strains in chronic EAE. We showed that oral administration of Lactobacillus paracasei DSM 13434, Lactobacillus plantarum DSM 15312 or Lactobacillus plantarum DSM 15313 suppressed EAE development by down-regulating autoreactive Th1 cells. The protective effect of the probiotic treatment was shown to be associated with an expansion of regulatory T cells in mesenteric lymph nodes and spleen followed by an increased production of IL-4, IL-10 and TGF-beta. We further demonstrated the powerful therapeutic potential of these bacteria in diseased animals when treating with a combination of these probiotic strains.
  •  
6.
  • Muhammad, Asad, et al. (författare)
  • Platelets support pulmonary recruitment of neutrophils in abdominal sepsis
  • 2009
  • Ingår i: Critical Care Medicine. - 1530-0293. ; 37:4, s. 1389-1396
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Recent findings Indicate that platelets not only regulate thrombosis and hemostasis but may also be involved in proinflammatory activities. Herein, we hypothesized that platelets may play a role in sepsis by activating and priming circulating neutrophils for subsequent recruitment Into the lung. Design: Prospective experimental study. Setting. University Hospital Research Unit. Subject. Male C57BL/6 mice. Interventions. Lung edema, bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, expression and function of membrane-activated complex-1 (Mac-1) on neutrophils and the CXC chemokines, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant were determined after cecal ligation and puncture (CLP). Mice received a platelet-depleting antibody as well as antibodies directed against P-selectin glycoprotein-ligand-1 and Mac-1 before CLP induction. Measurements and Main Results. CLP caused significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils and increased the number of neutrophils binding platelets in the circulation. Interestingly, depletion of platelets reduced CLP-induced edema and neutrophil recruitment in the bronchoalveolar space by >60%. Furthermore, depletion of platelets reduced Mac-1 expression on neutrophils. On the other hand, inhibition of P-selectin glycoprotein-ligand-1 abolished CLP-induced neutrophil-platelet aggregation but had no effect on neutrophil expression of Mac-1. Conclusions: These data demonstrate that platelets play a key role in regulating infiltration of neutrophils and edema formation in the lung via upregulation of Mac-1 in abdominal sepsis. (Crit Care Med 2009; 37:1389-1396)
  •  
7.
  • Zargari, Mehryar, et al. (författare)
  • Relationship between the clinical scoring and demyelination in central nervous system with total antioxidant capacity of plasma during experimental autoimmune encephalomyelitis development in mice
  • 2007
  • Ingår i: Neuroscience Letters. - : Elsevier BV. - 0304-3940. ; 412:1, s. 24-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental autoimmune encephalomyelitis (EAE) was induced in a mouse model (C57/BL6) to investigate the antioxidant status of animals at various clinical stages of the disease. For this purpose, blood, brain and spinal cord samples from EAE mice were collected and examined at different scores following post-immunization with myelin oligodendrocyte glycoprotein (MOG). The clinical sign of mobility of animals on different days was associated with gradual increase in lipid peroxidation products (malondialdehyde, i.e. NIDA) in brain and spinal cord. Changes in lipid peroxidation during EAE progression was inversely related to superoxide dismutase (SOD) activity in erythrocyte preparation. However, suppression of catalase in erythrocytes, tissue glutathione (GSH) and plasma total antioxidant capacity (FRAP assay) were the early events in EAE, occurred during scores 1 and 2. Biochemical alterations were corroborated with histopathological observations showing demyelination and inflammatory foci in central nervous system (CNS) of animals suffering from partial hind limb paralysis (score 3). These data suggest that generation of NIDA in CNS is a continuous process during EAE induction and suppression of antioxidant factors are early events of the disease, but crucial in increasing the vulnerability of CNS to demyelinating lesions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy