SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Layton D.) srt2:(2020-2024)"

Sökning: WFRF:(Layton D.) > (2020-2024)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  •  
6.
  •  
7.
  • Khatri, C, et al. (författare)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
8.
  •  
9.
  •  
10.
  • Layton, K. K. S., et al. (författare)
  • Predicting the future of our oceans : Evaluating genomic forecasting approaches in marine species
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:3
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change is restructuring biodiversity on multiple scales and there is a pressing need to understand the downstream ecological and genomic consequences of this change. Recent advancements in the field of eco-evolutionary genomics have sought to include evolutionary processes in forecasting species' responses to climate change (e.g., genomic offset), but to date, much of this work has focused on terrestrial species. Coastal and offshore species, and the fisheries they support, may be even more vulnerable to climate change than their terrestrial counterparts, warranting a critical appraisal of these approaches in marine systems. First, we synthesize knowledge about the genomic basis of adaptation in marine species, and then we discuss the few examples where genomic forecasting has been applied in marine systems. Next, we identify the key challenges in validating genomic offset estimates in marine species, and we advocate for the inclusion of historical sampling data and hindcasting in the validation phase. Lastly, we describe a workflow to guide marine managers in incorporating these predictions into the decision-making process. Predicting climate change impacts is of central importance in marine ecosystems that provide a major source of nutrition to global communities and this work must be based on a sound understanding of both ecological and genomic impacts. This opinion synthesizes knowledge about the genomic basis of adaptation in marine species, highlights the few examples where genomic forecasting has been applied in marine systems, identifies the key challenges in validating genomic offset estimates in marine species, and provides a workflow to guide marine managers in incorporating these predictions into the decision-making process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy