SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lebens Michael 1956) srt2:(2010-2014)"

Sökning: WFRF:(Lebens Michael 1956) > (2010-2014)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benktander, John, et al. (författare)
  • The Repertoire of Glycosphingolipids Recognized by Vibrio cholerae
  • 2013
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The binding of cholera toxin to the ganglioside GM1 as the initial step in the process leading to diarrhea is nowadays textbook knowledge. In contrast, the knowledge about the mechanisms for attachment of Vibrio cholerae bacterial cells to the intestinal epithelium is limited. In order to clarify this issue, a large number of glycosphingolipid mixtures were screened for binding of El Tor V. cholerae. Several specific interactions with minor complex non-acid glycosphingolipids were thereby detected. After isolation of binding-active glycosphingolipids, characterization by mass spectrometry and proton NMR, and comparative binding studies, three distinct glycosphingolipid binding patterns were defined. Firstly, V. cholerae bound to complex lacto/neolacto glycosphingolipids with the GlcNAcβ3Galβ4GlcNAc sequence as the minimal binding epitope. Secondly, glycosphingolipids with a terminal Galα3Galα3Gal moiety were recognized, and the third specificity was the binding to lactosylceramide and related compounds. V. cholerae binding to lacto/neolacto glycosphingolipids, and to the other classes of binding-active compounds, remained after deletion of the chitin binding protein GbpA. Thus, the binding of V. cholerae to chitin and to lacto/neolacto containing glycosphingolipids represents two separate binding specificities.
  •  
2.
  •  
3.
  • Holmner, Åsa, et al. (författare)
  • Crystal Structures Exploring the Origins of the Broader Specificity of Escherichia coli Heat-Labile Enterotoxin Compared to Cholera Toxin.
  • 2011
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 406:3, s. 387-402
  • Tidskriftsartikel (refereegranskat)abstract
    • Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are structurally and functionally related and share the same primary receptor, the GM1 ganglioside. Despite their extensive similarities, these two toxins exhibit distinct ligand specificities, with LT being more promiscuous than CT. Here, we have attempted to rationalize the broader binding specificity of LT and the subtle differences between the binding characteristics of LTs from human and porcine origins (mediated by their B subunit pentamers, hLTB and pLTB, respectively). The analysis is based on two crystal structures of pLTB in complexes with the pentasaccharide of its primary ligand, GM1, and with neolactotetraose, the carbohydrate determinant of a typical secondary ligand of LTs, respectively. Important molecular determinants underlying the different binding specificities of LTB and CTB are found to be contributed by Ser95, Tyr18 and Thr4 (or Ser4 of hLTB), which together prestabilize the binding site by positioning Lys91, Glu51 and the adjacent loop region (50-61) containing Ile58 for ligand binding. Glu7 and Ala1 may also play an important role. Many of these residues are closely connected with a recently identified second binding site, and there appears to be cross-talk between the two binding sites. Binding to N-acetyllactosamine-terminated receptors is further augmented by Arg13 (present in pLT and some hLT variants), as previously predicted.
  •  
4.
  • Jansson, Lena, 1979, et al. (författare)
  • Carbohydrate binding specificities and crystal structure of the cholera toxin-like B-subunit from Citrobacter freundii.
  • 2010
  • Ingår i: Biochimie. - : Elsevier BV. - 1638-6183 .- 0300-9084. ; 92:5, s. 482-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterotoxigenic Escherichia coli and Vibrio cholerae are well known causative agents of severe diarrheal diseases. Both pathogens produce AB(5) toxins, with one enzymatically active A-subunit and a pentamer of receptor-binding B-subunits. The primary receptor for both B-subunits is the GM1 ganglioside (Galbeta3GalNAcbeta4(NeuAcalpha3)Galbeta4GlcbetaCer), but the B-subunits from porcine isolates of E. coli also bind neolacto-(Galbeta4GlcNAcbeta-)terminated glycoconjugates and the B-subunits from human isolates of E. coli (hLTB) have affinity for blood group A type 2-(GalNAcalpha3(Fucalpha2)Galbeta4GlcNAcbeta-)terminated glycoconjugates. A B-subunit with 73% sequence identity to the B-subunits of cholera toxin and the heat-labile toxin of E. coli is produced by certain strains of enteropathogenic E. coli and by Citrobacter freundii. This C. freundii B-subunit (CFXB) has now been expressed in V. cholerae, and isolated in high yields. Glycosphingolipid binding studies show that CFXB binds to the GM1 ganglioside with high affinity. In addition, CFXB has high affinity for both neolacto-terminated and blood group A type 2-terminated glycoconjugates. The crystal structure of the pentameric arrangement of C. freundii B-subunits display high structural similarity with related proteins from E. coli and V. cholerae and oligosaccharide binding sites can be identified on the protein surface. Small changes in the 88-95 loop connecting the GM1 and blood group A binding sites explains the minor changes in affinity seen for these two ligands. However, the enhanced affinity of CFXB for neolacto-terminated structures can be sought in the Lys34Tyr substitution affording additional hydrogen bond interactions between the tyrosyl side chain and the GlcNAcbeta3Galb4Glcbeta1 segment of neolactotetraosylceramide via bridging water molecules.
  •  
5.
  • Karlsson, S. L., et al. (författare)
  • Development of stable vibrio cholerae O1 Hikojima type vaccine strains co-expressing the Inaba and Ogawa lipopolysaccharide antigens
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe here the development of stable classical and El Tor V. cholerae O1 strains of the Hikojima serotype that co-express the Inaba and Ogawa antigens of O1 lipopolysaccharide (LPS). Mutation of the wbeTgene reduced LPS perosamine methylation and thereby gave only partial transformation into Ogawa LPS on the cell surface. The strains express approximately equal amounts of Inaba-and Ogawa-LPS antigens which are preserved after formalin-inactivation of the bacteria. Oral immunizations of both inbred and outbred mice with formalin-inactivated whole-cell vaccine preparations of these strains elicited strong intestinal IgA anti-LPS as well as serum vibriocidal antibody responses against both Inaba and Ogawa that were fully comparable to the responses induced by the licensed Dukoral vaccine. Passive protection studies in infant mice showed that immune sera raised against either of the novel Hikojima vaccine strains protected baby mice against infection with virulent strains of both serotypes. This study illustrates the power of using genetic manipulation to improve the properties of bacteria strains for use in killed whole-cell vaccines.
  •  
6.
  •  
7.
  • Lebens, Michael, 1956, et al. (författare)
  • Construction of novel vaccine strains of Vibrio cholerae co-expressing the Inaba and Ogawa serotype antigens
  • 2011
  • Ingår i: Vaccine. - : Elsevier BV. - 0264-410X .- 1873-2518. ; 29:43, s. 7505-7513
  • Tidskriftsartikel (refereegranskat)abstract
    • The approach of inducing protective immunity against cholera by oral vaccination with killed whole Vibrio cholerae cells is effective, but the complexity of current cholera vaccines makes them difficult and relatively expensive to manufacture, especially if recombinant cholera toxin B subunit is included in the formulation. In an effort to simplify the composition of a new generation of oral cholera vaccines we have generated a novel non-toxigenic candidate vaccine strain of V. cholerae O1 that stably expresses both the Ogawa and Inaba serotype antigens on its surface. This was done by introducing a functional wbeT gene without a functional promoter into the chromosome of an O1 Inaba strain. The resulting low levels of expression of the wbeT gene product allowed for the desired partial serotype switching. This strain (MS1342) can potentially replace the three virulent strains used in currently manufactured cholera vaccines. Oral immunization of mice with formalin-killed MS1342 bacteria gave rise to Ogawa-specific, Inaba-specific and cross-reactive serum antibodies that were detectable both by lipopolysaccharide (LPS)-specific ELISAs and as vibriocidal antibodies that are considered to predict protective efficacy. These responses as well as intestinal mucosal IgA anti-LPS antibody responses were fully comparable with those obtained by immunization with the internationally licensed oral cholera vaccine Dukoral ®. We propose that such a strain may form the basis of a single strain killed whole cell cholera vaccine protecting against cholera caused by either the Inaba or Ogawa serotype of V. cholerae O1. 
  •  
8.
  • Mutreja, Ankur, et al. (författare)
  • Evidence for several waves of global transmission in the seventh cholera pandemic.
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 477:7365, s. 462-465
  • Tidskriftsartikel (refereegranskat)abstract
    • Vibrio cholerae is a globally important pathogen that is endemic in many areas of the world and causes 3-5 million reported cases of cholera every year. Historically, there have been seven acknowledged cholera pandemics; recent outbreaks in Zimbabwe and Haiti are included in the seventh and ongoing pandemic. Only isolates in serogroup O1 (consisting of two biotypes known as 'classical' and 'El Tor') and the derivative O139 can cause epidemic cholera. It is believed that the first six cholera pandemics were caused by the classical biotype, but El Tor has subsequently spread globally and replaced the classical biotype in the current pandemic. Detailed molecular epidemiological mapping of cholera has been compromised by a reliance on sub-genomic regions such as mobile elements to infer relationships, making El Tor isolates associated with the seventh pandemic seem superficially diverse. To understand the underlying phylogeny of the lineage responsible for the current pandemic, we identified high-resolution markers (single nucleotide polymorphisms; SNPs) in 154 whole-genome sequences of globally and temporally representative V. cholerae isolates. Using this phylogeny, we show here that the seventh pandemic has spread from the Bay of Bengal in at least three independent but overlapping waves with a common ancestor in the 1950s, and identify several transcontinental transmission events. Additionally, we show how the acquisition of the SXT family of antibiotic resistance elements has shaped pandemic spread, and show that this family was first acquired at least ten years before its discovery in V. cholerae.
  •  
9.
  • Tobias, Joshua, 1969, et al. (författare)
  • Construction and expression of immunogenic hybrid enterotoxigenic Escherichia coli CFA/I and CS2 colonization fimbriae for use in vaccines.
  • 2010
  • Ingår i: Applied microbiology and biotechnology. - : Springer Science and Business Media LLC. - 1432-0614 .- 0175-7598. ; 87:4, s. 1355-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrheal morbidity in developing countries, especially in children and also of traveler's diarrhea. Colonization factors (CFs) of ETEC, like CFA/I and CS2 which are genetically and structurally related, play a substantial role in pathogenicity, and since intestinal-mucosal immune responses against CFs appear to be protective, much effort has focused on the development of a CF-based ETEC vaccine. We have constructed hybrid operons in which the major CS2 subunit-encoding cotA gene was inserted into the CFA/I operon, either replacing (hybrid I) or being added to the major CFA/I subunit-encoding cfaB gene (hybrid II). Using specific monoclonal antibodies against the major subunits of CFA/I and CS2, high levels of surface expression of both fimbrial subunits were shown in E. coli carrying the hybrid II operon. Oral immunization of mice with formalin-killed bacteria expressing hybrid II fimbriae induced strong CFA/I- and CS2-specific serum IgG + IgM and fecal IgA antibody responses, which were higher than those achieved by similar immunization with the reference strains. Bacteria expressing hybrid fimbriae are potential candidate strains in an oral-killed CF-ETEC vaccine, and the approach represents an attractive and novel means of producing a broad-spectrum ETEC vaccine.
  •  
10.
  • Tobias, Joshua, 1969, et al. (författare)
  • Construction of a non-toxigenic Escherichia coli oral vaccine strain expressing large amounts of CS6 and inducing strong intestinal and serum anti-CS6 antibody responses in mice.
  • 2011
  • Ingår i: Vaccine. - : Elsevier BV. - 1873-2518 .- 0264-410X. ; 29:48, s. 8863-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Coli surface antigen 6 (CS6) is one of the most prevalent non-fimbrial colonization factors (CFs) of enterotoxigenic Escherichia coli (ETEC) bacteria, which are the most common cause of diarrhea among infants and children in developing countries. Since immune protection against ETEC is mainly mediated by locally produced IgA antibodies in the gut, much effort is focused on the development of an oral CF-based vaccine. Previous work has described the preparation of candidate E. coli vaccine strains expressing immunogenic amounts of fimbrial CF antigens such as CFA/I and CS2, which are retained after formalin treatment. However, attempts to generate E. coli expressing immunogenic amounts of CS6 and to preserve the immunological activity of the CS6 protein in a killed whole-cell vaccine have failed until now. Here we describe the construction of a recombinant non-toxigenic E. coli strain, with thyA as a non-antibiotic-based selection, which expresses large amounts of CS6 antigen on the bacterial surface, and show that phenol inactivation of the bacteria does not destroy the CS6 antigen properties. Oral immunization of mice with such phenol-killed CS6 over-expressing E. coli bacteria induced strong fecal and intestinal IgA and serum IgG+IgM antibody responses to CS6 that exceeded the responses induced by an ETEC reference strain naturally expressing CS6 and previously used as a vaccine strain. Our data indicate that the described phenol-inactivated non-toxigenic and CS6 over-expressing E. coli strain may be a useful component in an oral ETEC vaccine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy