SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leblanc A) srt2:(2005-2009)"

Sökning: WFRF:(Leblanc A) > (2005-2009)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Sabbagh, S. A., et al. (författare)
  • Resistive wall stabilized operation in rotating high beta NSTX plasmas
  • 2006
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 46:5, s. 635-644
  • Tidskriftsartikel (refereegranskat)abstract
    • The National Spherical Torus Experiment (NSTX) has demonstrated the advantages of low aspect ratio geometry in accessing high toroidal and normalized plasma beta, and βN ≡ 10 8〈βt〉 aB0/Ip. Experiments have reached βt = 39% and βN = 7.2 through boundary and profile optimization. High βN plasmas can exceed the ideal no-wall stability limit, βNno-wall, for periods much greater than the wall eddy current decay time. Resistive wall mode (RWM) physics is studied to understand mode stabilization in these plasmas. The toroidal mode spectrum of unstable RWMs has been measured with mode number n up to 3. The critical rotation frequency of Bondeson-Chu, Ωcrit = ωA/(4q2), describes well the RWM stability of NSTX plasmas when applied over the entire rotation profile and in conjunction with the ideal stability criterion. Rotation damping and global rotation collapse observed in plasmas exceeding βNno-wall differs from the damping observed during tearing mode activity and can be described qualitatively by drag due to neoclassical toroidal viscosity in the helically perturbed field of an ideal displacement. Resonant field amplification of an applied n = 1 field perturbation has been measured and increases with increasing βN. Equilibria are reconstructed including measured ion and electron pressure, toroidal rotation and flux isotherm constraint in plasmas with core rotation ω/ωA up to 0.48. Peak pressure shifts of 18% of the minor radius from the magnetic axis have been reconstructed.
  •  
3.
  • Langlais, B., et al. (författare)
  • Mars environment and magnetic orbiter model payload
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 761-783
  • Tidskriftsartikel (refereegranskat)abstract
    • Mars Environment and Magnetic Orbiter was proposed as an answer to the Cosmic Vision Call of Opportunity as a M-class mission. The MEMO mission is designed to study the strong interconnections between the planetary interior, atmosphere and solar conditions essential to understand planetary evolution, the appearance of life and its sustainability. MEMO provides a high-resolution, complete, mapping of the magnetic field (below an altitude of about 250 km), with an yet unachieved full global coverage. This is combined with an in situ characterization of the high atmosphere and remote sensing of the middle and lower atmospheres, with an unmatched accuracy. These measurements are completed by an improved detection of the gravity field signatures associated with carbon dioxide cycle and to the tidal deformation. In addition the solar wind, solar EUV/UV and energetic particle fluxes are simultaneously and continuously monitored. The challenging scientific objectives of the MEMO mission proposal are fulfilled with the appropriate scientific instruments and orbit strategy. MEMO is composed of a main platform, placed on a elliptical (130 x 1,000 km), non polar (77A degrees inclination) orbit, and of an independent, higher apoapsis (10,000 km) and low periapsis (300 km) micro-satellite. These orbital parameters are designed so that the scientific return of MEMO is maximized, in terms of measurement altitude, local time, season and geographical coverage. MEMO carry several suites of instruments, made of an 'exospheric-upper atmosphere' package, a 'magnetic field' package, and a 'low-middle atmosphere' package. Nominal mission duration is one Martian year.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • LeBlanc, Erin S, et al. (författare)
  • The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men.
  • 2009
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 94:9, s. 3337-46
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: The relationship between sex steroids and fracture is poorly understood. OBJECTIVE: The objective of the study was to examine associations between nonvertebral fracture risk and bioavailable estradiol (bioE2), bioavailable testosterone (bioT), and SHBG. DESIGN: This was a case-cohort study. SETTING: The Osteoporotic Fractures in Men Study (MrOS) was conducted in a prospective U.S. cohort in 5995 community-dwelling men 65 yr old or older. PARTICIPANTS: Participants included a subcohort of 1436 randomly chosen white men plus all 446 minorities and all those with incident hip and other nonvertebral fractures. MAIN OUTCOME MEASURES: Baseline testosterone and estradiol were measured by mass spectrometry (MS) and SHBG by RIA. RESULTS: Men with the lowest bioE2 (<11.4 pg/ml) or highest SHBG (>59.1 nm) had greater risk of all nonvertebral fractures [adjusted hazard ratio (HR) [95% confidence interval]: 1.5 (1.2-1.9) and 1.4 (1.1-21.8), respectively]. Men with the lowest bioT (<163.5 ng/dl) had no increased fracture risk after adjustment for bioE2 [adjusted HR 1.16 (0.90-1.49)]. A significant interaction between SHBG and bioT (P = 0.03) resulted in men with low bioT and high SHBG having higher fracture risk [HR 2.1 (1.4-3.2)]. Men with low bioE2, low bioT, and high SHBG were at highest risk [HR 3.4 (2.2-5.3)]. CONCLUSIONS: Older men with low bioE2 or high SHBG levels are at increased risk of nonvertebral fracture. When SHBG levels are high, men with low bioT levels have higher risk. The strongest association occurred when all measures were considered in combination.
  •  
8.
  •  
9.
  •  
10.
  • Tesch, Per A, et al. (författare)
  • Effects of 17-day spaceflight on knee extensor muscle function and size. : European journal of applied physiology
  • 2005
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 93:4, s. 463-468
  • Tidskriftsartikel (refereegranskat)abstract
    • It is generally held that space travelers experience muscle dysfunction and atrophy during exposure to microgravity. However, observations are scarce and reports somewhat inconsistent with regard to the time course, specificity and magnitude of such changes. Hence, we examined four male astronauts (group mean 43 years, 86 kg and 183 cm) before and after a 17-day spaceflight (Space Transport System-78). Knee extensor muscle function was measured during maximal bilateral voluntary isometric and iso-inertial concentric, and eccentric actions. Cross-sectional area (CSA) of the knee extensor and flexor, and gluteal muscle groups was assessed by means of magnetic resonance imaging. The decrease in strength (P<0.05) across different muscle actions after spaceflight amounted to 10%. Eight ambulatory men, examined on two occasions 20 days apart, showed unchanged (P>0.05) muscle strength. CSA of the knee extensor and gluteal muscles, each decreased (P<0.05) by 8%. Knee flexor muscle CSA showed no significant (P>0.05) change. The magnitude of these changes concord with earlier results from ground-based studies of similar duration. The results of this study, however, do contrast with the findings of no decrease in maximal voluntary ankle plantar flexor force previously reported in the same crew.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy