SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leck C.) srt2:(2010-2014)"

Sökning: WFRF:(Leck C.) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tjernström, Michael, et al. (författare)
  • The Arctic Summer Cloud Ocean Study (ASCOS) : overview and experimental design
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:6, s. 2823-2869
  • Tidskriftsartikel (refereegranskat)abstract
    • The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87 degrees 21' N, 01 degrees 29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
  •  
2.
  • Tjernström, Michael, et al. (författare)
  • Meteorological conditions in the Central Arctic summer during the arctic summer cloud ocean study (ascos)
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:15, s. 6863-6889
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the rapidly changing climate in the Arctic is limited by a lack of understanding of underlying strong feedback mechanisms that are specific to the Arctic. Progress in this field can only be obtained by process-level observations; this is the motivation for intensive ice-breaker-based campaigns such as the Arctic Summer Cloud-Ocean Study (ASCOS), described here. However, detailed field observations also have to be put in the context of the larger-scale meteorology, and short field campaigns have to be analysed within the context of the underlying climate state and temporal anomalies from this. To aid in the analysis of other parameters or processes observed during this campaign, this paper provides an overview of the synoptic-scale meteorology and its climatic anomaly during the ASCOS field deployment. It also provides a statistical analysis of key features during the campaign, such as key meteorological variables, the vertical structure of the lower troposphere and clouds, and energy fluxes at the surface. In order to assess the representativity of the ASCOS results, we also compare these features to similar observations obtained during three earlier summer experiments in the Arctic Ocean: the AOE-96, SHEBA and AOE-2001 expeditions. We find that these expeditions share many key features of the summertime lower troposphere. Taking ASCOS and the previous expeditions together, a common picture emerges with a large amount of low-level cloud in a well-mixed shallow boundary layer, capped by a weak to moderately strong inversion where moisture, and sometimes also cloud top, penetrate into the lower parts of the inversion. Much of the boundary-layer mixing is due to cloud-top cooling and subsequent buoyant overturning of the cloud. The cloud layer may, or may not, be connected with surface processes depending on the depths of the cloud and surface-based boundary layers and on the relative strengths of surface-shear and cloud-generated turbulence. The latter also implies a connection between the cloud layer and the free troposphere through entrainment at cloud top.
  •  
3.
  • Birch, C. E., et al. (författare)
  • Modelling atmospheric structure, cloud and their response to CCN in the central Arctic : ASCOS case studies
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:7, s. 3419-3435
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations made during late summer in the central Arctic Ocean, as part of the Arctic Summer Cloud Ocean Study (ASCOS), are used to evaluate cloud and vertical temperature structure in the Met Office Unified Model (MetUM). The observation period can be split into 5 regimes; the first two regimes had a large number of frontal systems, which were associated with deep cloud. During the remainder of the campaign a layer of low-level cloud occurred, typical of central Arctic summer conditions, along with two periods of greatly reduced cloud cover. The short-range operational NWP forecasts could not accurately reproduce the observed variations in near-surface temperature. A major source of this error was found to be the temperature-dependant surface albedo parameterisation scheme. The model reproduced the low-level cloud layer, though it was too thin, too shallow, and in a boundary-layer that was too frequently well-mixed. The model was also unable to reproduce the observed periods of reduced cloud cover, which were associated with very low cloud condensation nuclei (CCN) concentrations (< 1 cm(-3)). As with most global NWP models, the MetUM does not have a prognostic aerosol/cloud scheme but uses a constant CCN concentration of 100 cm(-3) over all marine environments. It is therefore unable to represent the low CCN number concentrations and the rapid variations in concentration frequently observed in the central Arctic during late summer. Experiments with a single-column model configuration of the MetUM show that reducing model CCN number concentrations to observed values reduces the amount of cloud, increases the near-surface stability, and improves the representation of both the surface radiation fluxes and the surface temperature. The model is shown to be sensitive to CCN only when number concentrations are less than 10-20 cm(-3).
  •  
4.
  • Browse, J., et al. (författare)
  • The complex response of Arctic aerosol to sea-ice retreat
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:14, s. 7543-7557
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of summertime Arctic sea ice will lead to a large increase in the emission of aerosols and precursor gases from the ocean surface. It has been suggested that these enhanced emissions will exert substantial aerosol radiative forcings, dominated by the indirect effect of aerosol on clouds. Here, we investigate the potential for these indirect forcings using a global aerosol microphysics model evaluated against aerosol observations from the Arctic Summer Cloud Ocean Study (ASCOS) campaign to examine the response of Arctic cloud condensation nuclei (CCN) to sea-ice retreat. In response to a complete loss of summer ice, we find that north of 70 degrees N emission fluxes of sea salt, marine primary organic aerosol (OA) and dimethyl sulfide increase by a factor of similar to 10, similar to 4 and similar to 15 respectively. However, the CCN response is weak, with negative changes over the central Arctic Ocean. The weak response is due to the efficient scavenging of aerosol by extensive drizzling stratocumulus clouds. In the scavenging-dominated Arctic environment, the production of condensable vapour from oxidation of dimethyl sulfide grows particles to sizes where they can be scavenged. This loss is not sufficiently compensated by new particle formation, due to the suppression of nucleation by the large condensation sink resulting from sea-salt and primary OA emissions. Thus, our results suggest that increased aerosol emissions will not cause a climate feedback through changes in cloud microphysical and radiative properties.
  •  
5.
  • Mauritsen, T., et al. (författare)
  • Aerosols indirectly warm the Arctic
  • 2010
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.
  •  
6.
  • Norris, S. J., et al. (författare)
  • Measurements of bubble size spectra within leads in the Arctic summer pack ice
  • 2011
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 7:1, s. 129-139
  • Tidskriftsartikel (refereegranskat)abstract
    • The first measurements of bubble size spectra within the near-surface waters of open leads in the central Arctic pack ice were obtained during the Arctic Summer Cloud-Ocean Study (ASCOS) in August 2008 at 8787.6 degrees N, 1-11 degrees W. A significant number of small bubbles (30-100 mu m diameter) were present, with concentration decreasing rapidly with size from 100-560 mu m; no bubbles larger than 560 mu m were observed. The bubbles were present both during periods of low wind speed (U < 6 m s(-1)) and when ice covered the surface of the lead. The low wind and short open-water fetch precludes production of bubbles by wave breaking suggesting that the bubbles are generated by processes below the surface. When the surface water was open to the atmosphere bubble concentrations increased with increasing heat loss to the atmosphere. The presence of substantial numbers of bubbles is significant because the bursting of bubbles at the surface provides a mechanism for the generation of aerosol and the ejection of biological material from the ocean into the atmosphere. Such a transfer has previously been proposed as a potential climate feedback linking marine biology and Arctic cloud properties.
  •  
7.
  • Sedlar, Joseph, et al. (författare)
  • A transitioning Arctic surface energy budget : the impacts of solar zenith angle, surface albedo and cloud radiative forcing
  • 2011
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 37:7-8, s. 1643-1660
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow surface and sea-ice energy budgets were measured near 87.5A degrees N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7A degrees C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m(-2) and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m(-2), except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy