SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Sang Yup) srt2:(2015-2019)"

Sökning: WFRF:(Lee Sang Yup) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheon, Seungwoo, et al. (författare)
  • Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels
  • 2016
  • Ingår i: Current opinion in chemical biology. - : Elsevier. - 1367-5931 .- 1879-0402. ; 35, s. 10-21
  • Tidskriftsartikel (refereegranskat)abstract
    • As climate change has become one of the major global risks, our heavy dependence on petroleum-derived fuels has received much public attention. To solve such problems, production of sustainable fuels has been intensively studied over the past years. Thanks to recent advances in synthetic biology and metabolic engineering technologies, bio-based platforms for advanced biofuels production have been developed using various microorganisms. The strategies for production of advanced biofuels have converged upon four major metabolic routes: the 2-ketoacid pathway, the fatty acid synthesis (FAS) pathway, the isoprenoid pathway, and the reverse β-oxidation pathway. Additionally, the polyketide synthesis pathway has recently been attracting interest as a promising alternative biofuel production route. In this article, recent trends in advanced biofuels production are reviewed by categorizing them into three types of advanced biofuels: alcohols, biodiesel and jet fuel, and gasoline. Focus is given on the strategies of employing synthetic biology and metabolic engineering for the development of microbial strains producing advanced fuels. Finally, the prospects for future advances needed to achieve much more efficient bio-based production of advanced biofuels are discussed, focusing on designing advanced biofuel production pathways coupled with screening, modifying, and creating novel enzymes.
  •  
2.
  • Chung, Hannah, et al. (författare)
  • Bio-based production of monomers and polymers by metabolically engineered microorganisms
  • 2015
  • Ingår i: Current Opinion in Biotechnology. - : Elsevier. - 0958-1669 .- 1879-0429. ; 36, s. 73-84
  • Forskningsöversikt (refereegranskat)abstract
    • Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased.
  •  
3.
  • Gustavsson, Martin, 1984-, et al. (författare)
  • Prospects of microbial cell factories developed through systems metabolic engineering
  • 2016
  • Ingår i: Microbial Biotechnology. - : John Wiley & Sons. - 1751-7907 .- 1751-7915. ; 9:5, s. 610-617
  • Tidskriftsartikel (refereegranskat)abstract
    • While academic-level studies on metabolic engineering of microorganisms for production of chemicals and fuels are ever growing, a significantly lower number of such production processes have reached commercial-scale. In this work, we review the challenges associated with moving from laboratory-scale demonstration of microbial chemical or fuel production to actual commercialization, focusing on key requirements on the production organism that need to be considered during the metabolic engineering process. Metabolic engineering strategies should take into account techno-economic factors such as the choice of feedstock, the product yield, productivity and titre, and the cost effectiveness of midstream and downstream processes. Also, it is important to develop an industrial strain through metabolic engineering for pathway construction and flux optimization together with increasing tolerance to products and inhibitors present in the feedstock, and ensuring genetic stability and strain robustness under actual fermentation conditions.
  •  
4.
  • Nielsen, Jens B, 1962, et al. (författare)
  • Evolution of the Metabolic Engineering Community
  • 2018
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 48, s. A1-A2
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy