SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Virginia M Y) srt2:(2020-2024)"

Sökning: WFRF:(Lee Virginia M Y) > (2020-2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Micah, Angela E., et al. (författare)
  • Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
  • 2021
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 398:10308, s. 1317-1343
  • Forskningsöversikt (refereegranskat)abstract
    • Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US$, 2020 US$ per capita, purchasing-power parity-adjusted US$ per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached $8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or $1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, $40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that $54.8 billion in development assistance for health was disbursed in 2020. Of this, $13.7 billion was targeted toward the COVID-19 health response. $12.3 billion was newly committed and $1.4 billion was repurposed from existing health projects. $3.1 billion (22.4%) of the funds focused on country-level coordination and $2.4 billion (17.9%) was for supply chain and logistics. Only $714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to $1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
2.
  • Nguyen, Thanh N, et al. (författare)
  • Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: A 1-Year Follow-up.
  • 2023
  • Ingår i: Neurology. - 1526-632X. ; 100:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Declines in stroke admission, IV thrombolysis (IVT), and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the effect of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), IVT, and mechanical thrombectomy over a 1-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, IVT treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.There were 148,895 stroke admissions in the 1 year immediately before compared with 138,453 admissions during the 1-year pandemic, representing a 7% decline (95% CI [95% CI 7.1-6.9]; p < 0.0001). ICH volumes declined from 29,585 to 28,156 (4.8% [5.1-4.6]; p < 0.0001) and IVT volume from 24,584 to 23,077 (6.1% [6.4-5.8]; p < 0.0001). Larger declines were observed at high-volume compared with low-volume centers (all p < 0.0001). There was no significant change in mechanical thrombectomy volumes (0.7% [0.6-0.9]; p = 0.49). Stroke was diagnosed in 1.3% [1.31-1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82-2.97], 5,656/195,539) of all stroke hospitalizations.There was a global decline and shift to lower-volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared with the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.This study is registered under NCT04934020.
  •  
3.
  • Thomas, Minta, et al. (författare)
  • Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
  •  
4.
  • Zhang, Jiasi Vicky, et al. (författare)
  • Neurofilament Light Chain Related to Longitudinal Decline in Frontotemporal Lobar Degeneration.
  • 2021
  • Ingår i: Neurology. Clinical practice. - 2163-0402. ; 11:2, s. 105-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate diagnosis and prognosis of frontotemporal lobar degeneration (FTLD) during life is an urgent concern in the context of emerging disease-modifying treatment trials. Few CSF markers have been validated longitudinally in patients with known pathology, and we hypothesized that CSF neurofilament light chain (NfL) would be associated with longitudinal cognitive decline in patients with known FTLD-TAR DNA binding protein ~43kD (TDP) pathology.This case-control study evaluated CSF NfL, total tau, phosphorylated tau, and β-amyloid1-42 in patients with known FTLD-tau or FTLD-TDP pathology (n = 50) and healthy controls (n = 65) and an extended cohort of clinically diagnosed patients with likely FTLD-tau or FTLD-TDP (n = 148). Regression analyses related CSF analytes to longitudinal cognitive decline (follow-up ∼1 year), controlling for demographic variables and core AD CSF analytes.In FTLD-TDP with known pathology, CSF NfL is significantly elevated compared with controls and significantly associated with longitudinal decline on specific executive and language measures, after controlling for age, disease duration, and core AD CSF analytes. Similar findings are found in the extended cohort, also including clinically identified likely FTLD-TDP. Although CSF NfL is elevated in FTLD-tau compared with controls, the association between NfL and longitudinal cognitive decline is limited to executive measures.CSF NfL is associated with longitudinal clinical decline in relevant cognitive domains in patients with FTLD-TDP after controlling for demographic factors and core AD CSF analytes and may also be related to longitudinal decline in executive functioning in FTLD-tau.
  •  
5.
  • Parra Bravo, Celeste, et al. (författare)
  • Human iPSC 4R tauopathy model uncovers modifiers of tau propagation.
  • 2024
  • Ingår i: Cell. - 1097-4172.
  • Tidskriftsartikel (refereegranskat)abstract
    • Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade invitro and invivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.
  •  
6.
  • Young, Alexandra L., et al. (författare)
  • Data-driven neuropathological staging and subtyping of TDP-43 proteinopathies
  • 2023
  • Ingår i: Brain. - 0006-8950. ; 146:7, s. 2975-2988
  • Tidskriftsartikel (refereegranskat)abstract
    • TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer’s disease (n = 304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating individuals with and without Alzheimer’s disease and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.
  •  
7.
  • Young, Alexandra L., et al. (författare)
  • Empirical pathological staging and subtyping of TDP-43 proteinopathies
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pathological aggregation of tar DNA-binding protein 43 (TDP-43) in the brain is the primary cause of many cases of frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). It is therefore imperative to establish empirical staging systems to characterize and distinguish stereotypical patterns and commonplace deviations of different TDP-43 proteinopathies. Method: We use ordinal ratings of TDP-43 burden from 19 brain regions to perform data-driven disease progression modeling (SuStaIn) to find the most likely trajectories for FTLD-TDP (n = 108), ALS (n = 137) and LATE (n = 283) from the CNDR Brain Bank at the University of Pennsylvania. Subtype number was defined using cross-validated information criterion. Each individual was assigned a subtype and stage. Multivariate OLS models tested differences between subtypes. Stages were compared to age and existing staging schemes. Cross-validated logistic regression was used for 3-way classification using SuStaIn information only. Result: SuStaIn provided data-driven staging of TDP-43 proteinopathies complementing previously described human-defined staging schema, further providing additional detail (Fig1A-C; Fig3A-C). SuStaIn also identified two distinct subtypes within FTLD-TDP and a further two within ALS (Fig1D). FTLD-TDP subtypes differed in TDP-43 type and Alzheimer’s disease pathology (Table1); ALS subtypes were differentiated by age (Table 2) and by antemortem clinical characteristics. No subtypes were observed for the LATE group. Progression along data-driven stages was positively associated with age in LATE individuals, but negatively associated with age in individuals with FTLD-TDP (Fig2). Using only regional TDP-43 severity, our data driven model could distinguish individuals diagnosed with ALS, FTD or LATE with a cross-validated balanced precision of 0.93 and balanced recall of 0.92, and these metrics improved to 0.95 and 0.96 when combined with a logistic regression model (Fig3). Very little stage overlap was found between FTLD-TDP and LATE, but stages that did overlap showed subtly different patterns (Fig4). Conclusion: We provide an empirical pathological staging system for ALS, FTLD-TDP and LATE, which is sufficient for staging and accurate classification. We demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns, whilst LATE exhibits a homogeneous progression pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy