SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leeb Lundberg Fredrik) srt2:(2015-2019)"

Sökning: WFRF:(Leeb Lundberg Fredrik) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Valdivia, Ernesto Gonzalez, et al. (författare)
  • Roles of PDZ-dependent Interactions and N-glycosylation in G Protein-coupled Estrogen Receptor 1 (GPER1)/GPR30-mediated Stimulation of ERK1/2 Activity
  • 2018
  • Ingår i: FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 32:1 Suppl, s. 6-685
  • Konferensbidrag (refereegranskat)abstract
    • G protein-coupled receptor 30 (GPR30) is a G protein-coupled receptor (GPCR) that is attracting considerable attention in breast cancer and cardiometabolic regulation. Following reports that GPR30 is required for some rapid estrogen responses, e.g. increased cAMP production and ERK1/2 activity, in estrogen receptor (ER)-negative cells, GPR30 was renamed G protein-coupled estrogen receptor 1 (GPER1). However, many questions remain about the identity of the cognate receptor ligand, receptor-effector coupling, and receptor membrane trafficking. To address the mechanism by which human GPR30 activates ERK1/2, we used HEK293 cells with and without ectopic expression of GPR30. Specifically, we investigated the role of the type I PSD-95/Discs-large/ZO-1 homology (PDZ) motif at the receptor C terminus (-SSAV) and three consensus sites for N glycosylation (N-X-S/T) in the receptor N-terminal domain (N25, N32, N44). We found previously that the C-terminal PDZ motif enables the receptor to interact with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, and this interaction is necessary for retaining the receptor in the plasma membrane and mediating a constitutive decrease in cAMP production that is not inhibited by pertussis toxin, thus independent of Gi/o. Here, we found that the receptor also constitutively increases ERK1/2 activity. Interestingly, this increase was inhibited by PTX as well as by wortmannin, but not by AG1478, indicating it is mediated by Gi/o and phosphoinositide 3-kinase (PI3K) but not epidermal growth factor receptor (EGFR) transactivation. Deleting the receptor PDZ motif or knocking down AKAP5 also inhibited the increase, showing that the PDZ interaction is also necessary for this response. Interestingly, the proposed GPR30 agonist G-1 increased ERK1/2 activity in a GPR30-dependent manner, but this increase was only observed at very low levels of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif, which completely inhibited the constitutive increase in ERK1/2 activity, did not inhibit the G-1-stimulated increase. Mutating the potential N-glycosylation residues N25 or N32 to I in the GPR30 N-terminal domain did not prevent receptor plasma membrane expression or ERK1/2 activation. On the other hand, mutating N44 to I completely prevented both plasma membrane expression and ERK1/2 activation, and caused receptor degradation. Thus, the PDZ-dependent receptor interaction with SAP97 and AKAP5, and therefore plasma membrane retention, is necessary for constitutive GPR30-mediated stimulation of ERK1/2 activation, whereas G-1-stimulated ERK1/2 activation may remain following constitutive internalization. On the other hand, N-glycosylation of N44 appears to be necessary for maturation of the receptor to the plasma membrane. Support or Funding Information Swedish Research Council and Swedish Cancer Foundation This abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
  •  
2.
  • Gonzalez de Valdivia, Ernesto, et al. (författare)
  • Human G protein-coupled Receptor 30 (GPR30) is N -glycosylated and N-terminal Domain Asparagine 44 is Required for Receptor Structure and Activity
  • 2019
  • Ingår i: Bioscience Reports. - 0144-8463. ; 39:2
  • Tidskriftsartikel (refereegranskat)abstract
    • GPR30, or G protein-coupled estrogen receptor (GPER), is a G protein-coupled receptor (GPCR) that is currently attracting considerable attention in breast cancer and cardiometabolic regulation. The receptor was reported to be a novel membrane estrogen receptor mediating rapid non-genomic responses. However, questions remain about both the cognate ligand and the subcellular localization of receptor activity. Here, we used HEK293 cells ectopically expressing N-terminally FLAG-tagged human GPR30 and three unique antibodies (Ab) specifically targeting the receptor N-terminal domain (N-domain) to investigate the role of N -glycosylation in receptor maturation and activity, the latter assayed by constitutive receptor-stimulated ERK1/2 activity. GPR30 expression was complex with receptor species spanning from about 40 kDa to higher molecular masses and localized in the endoplasmatic reticulum (ER), the plasma membrane (PM), and endocytic vesicles. The receptor contains three conserved asparagines, Asn25, Asn32, and Asn44, in consensus N -glycosylation motifs, all in the N-domain, and PNGase F treatment showed that at least one of them is N -glycosylated. Mutating Asn44 to isoleucine inactivated the receptor, yielding a unique receptor species at about 20 kDa that was recognized by Ab only in a denatured state. On the other hand, mutating Asn25 or Asn32 either individually or in combination, or truncating successively N-domain residues 1-42, had no significant effect either on receptor structure, maturation, or activity. Thus, Asn44 in the GPR30 N-domain is required for receptor structure and activity, whereas N-domain residues 1-42, including specifically Asn25 and Asn32, do not play any major structural or functional roles.
  •  
3.
  • Gonzalez, Ernesto, et al. (författare)
  • G protein-coupled Estrogen Receptor 1 (GPER1)/GPR30 Increases ERK1/2 Activity Through PDZ-dependent and -independent Mechanisms
  • 2017
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; , s. 9932-9943
  • Tidskriftsartikel (refereegranskat)abstract
    • G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of Gi/o. Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin (PTX) as well as by wortmannin, but not by AG1478, indicating that Gi/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor (EGFR) transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two Gi/o-mediated mechanisms; a PDZ-dependent apparently constitutive mechanism, and a PDZ-independent G-1-stimulated mechanism.
  •  
4.
  • Kabir, Mohammad E, et al. (författare)
  • G Protein-Coupled Estrogen Receptor 1 Mediates Acute Estrogen-Induced Cardioprotection via MEK/ERK/GSK-3β Pathway after Ischemia/Reperfusion.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Three types of estrogen receptors (ER) exist in the heart, Esr1, Esr2 and the G protein-coupled estrogen receptor 1, Gper1. However, their relative importance in mediating estrogen protective action is unknown. We found that, in the male mouse ventricle, Gper1 transcripts are three- and seventeen-fold more abundant than Esr1 and Esr2 mRNAs, respectively. Analysis of the three ER knockouts (Esr1-/-, Esr2-/- and Gper1-/-) showed that only the Gper1-/- hearts lost their ability to be protected by 40 nM estrogen as measured by heart function, infarct size and mitochondrial Ca2+ overload, an index of mitochondrial permeability transition pore (mPTP) activity. Analysis of Akt, ERK1/2 and GSK-3β salvage kinases uncovered Akt and ERK1/2 transient activation by estrogen whose phosphorylation increased during the first 5 min of non-ischemic perfusion. All these increase in phosphorylation effects were abrogated in Gper1-/-. Inhibition of MEK1/2/ERK1/2 (1 μM U0126) and PI-3K/Akt (10 μM LY294002) signaling showed that the MEK1/2/ERK1/2 pathway via GSK-3β exclusively was responsible for cardioprotection as an addition of U0126 prevented estrogen-induced GSK-3β increased phosphorylation, resistance to mitochondrial Ca2+-overload, functional recovery and protection against infarction. Further, inhibiting PKC translocation (1 μM chelerythrin-chloride) abolished estrogen-induced cardioprotection. These data indicate that estrogen-Gper1 acute coupling plays a key role in cardioprotection against ischemia/reperfusion injury in male mouse via a cascade involving PKC translocation, ERK1/2/GSK-3β phosphorylation leading to the inhibition of the mPTP opening.
  •  
5.
  • Kahn, Robin, et al. (författare)
  • Microvesicle transfer of kinin B1-receptors is a novel inflammatory mechanism in vasculitis
  • 2017
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538. ; 91:1, s. 96-105
  • Tidskriftsartikel (refereegranskat)abstract
    • During vasculitis, activation of the kinin system induces inflammation, whereby the kinin B1-receptor is expressed and activated after ligand binding. Additionally, activated blood cells release microvesicles into the circulation. Here we determined whether leukocyte-derived microvesicles bear B1-kinin receptors during vasculitis, and if microvesicles transfer functional B1-receptors to recipient cells, thus promoting inflammation. By flow cytometry, plasma from patients with vasculitis were found to contain high levels of leukocyte-derived microvesicles bearing B1-receptors. Importantly, renal biopsies from two patients with vasculitis showed leukocyte-derived microvesicles bearing B1-receptors docking on glomerular endothelial cells providing in vivo relevance. Microvesicles derived from B1-receptor-transfected human embryonic kidney cells transferred B1-receptors to wild-type human embryonic kidney cells, lacking the receptor, and to glomerular endothelial cells. The transferred B1-receptors induced calcium influx after B1-receptor agonist stimulation: a response abrogated by a specific B1-receptor antagonist. Microvesicles derived from neutrophils also transferred B1-receptors to wild-type human embryonic kidney cells and induced calcium influx after stimulation. Thus, we found a novel mechanism by which microvesicles transfer functional receptors and promote kinin-associated inflammation.
  •  
6.
  • Mossberg, Maria, et al. (författare)
  • Cl-Inhibitor Decreases the Release of Vasculitis-Like Chemotactic Endothelial Microvesicles
  • 2017
  • Ingår i: Journal of the American Society of Nephrology. - : AMER SOC NEPHROLOGY. - 1046-6673 .- 1533-3450. ; 28:8, s. 2472-2481
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinin system is activated during vasculitis and may contribute to chronic inflammation. C1-inhibitor is the main inhibitor of the kinin system. In this study, we investigated the presence of the kinin B1 receptor on endothelial microvesicles and its contribution to the inflammatory process. Compared with controls (n=15), patients with acute vasculitis (n=12) had markedly higher levels of circulating endothelial micro vesicles, identified by flow cytometry analysis, and significantly more microvesicles that were positive for the kinin B1 receptor (Pamp;lt;0.001). Compared with microvesicles from wild-type cells, B1 receptor-positive microvesicles derived from transfected human embryonic kidney cells induced a significant neutrophil chemotactic effect, and a B1 receptor antagonist blocked this effect. Likewise, patient plasma induced neutrophil chemotaxis, an effect decreased by reduction of microvesicle levels and by blocking the B1 receptor. We used a perfusion system to study the effect of patient plasma (n=6) and control plasma (n=6) on the release of microvesicles from glomerular endothelial cells. Patient samples induced the release of significantly more B1 receptor-positive endothelial microvesicles than control samples, an effect abrogated by reduction of the microvesicles in the perfused samples. Perfusion of C1-inhibitor depleted plasma over glomerular endothelial cells promoted excessive release of B1 receptor-positive endothelial microvesicles compared with normal plasma, an effect significantly decreased by addition of C1-inhibitor or B1 receptor-antagonist. Thus, B1 receptor-positive endothelial microvesicles may contribute to chronic inflammation by inducing neutrophil chemotaxis, and the reduction of these microvesicles by C1-inhibitor should be explored as a potential treatment for neutrophil-induced inflammation.
  •  
7.
  • Narbe, Ulrik, et al. (författare)
  • AIB1 is a new putative prognostic biomarker in the luminal A and B-like (HER2-negative) classification of invasive lobular carcinoma
  • 2017
  • Ingår i: ; , s. 1-07
  • Konferensbidrag (refereegranskat)abstract
    • Body: Background: Estrogen receptor (ER) positive HER2-negative breast cancer comprises 75–80% of all breast cancer. Thisfraction is even higher (>90%) in invasive lobular carcinoma (ILC). According to the St Gallen surrogate definitions of the intrinsicsubtypes, Ki67 and progesterone receptor (PgR) are used to classify these tumors as luminal A- and luminal B-like(HER2-negative). These guidelines are based on information derived from patient materials with mixed histological types, wherethe vast majority of the patients have invasive ductal carcinoma. The `luminal-like classification´ together with histological grade,tumor size and lymph node status is widely used in the clinic for prognostication. The aim of the present study was to investigateif the same markers are applicable for ILC, and furthermore, if additional biomarkers involved in the endocrine signaling system,e.g. Amplified in breast cancer 1 (AIB1) and the putative G protein-coupled estrogen receptor (GPER), might providecomplementary prognostic information.Patients: Two hundred and thirty-three (N = 233) well-characterized patients with primary ILC, diagnosed between 1980 and1991 were included. Forty-two percent of the patients received adjuvant endocrine treatment and 2 % received adjuvantchemotherapy. All biomarkers were analyzed immunohistochemically on tissue microarray, whereas histological grade wasevaluated on whole sections according to Elston and Ellis (NHG). The primary endpoint was breast cancer mortality (BCM).Results: In univariable analyses with 10-year follow-up, Ki67 (high vs. low), NHG (3 vs. 1+2) and AIB1 (high vs. low) weresignificantly associated to BCM (Hazard Ratio: 4.7, 95% CI: 2.1–10.4, p 95% CI: 1.4–7.2, p = 0.005 respectively), whereas PgR (respectively). Essentially the same effect was seen after multivariable adjustment for lymph node status (+ vs. -), tumor size (>20mm vs. according to St Gallen surrogate definitions did not show significant prognostic differences between the two groups (p = 0.12).Patients with AIB1) had a 10-year BCM of 4.2% (95% CI: 1.4–12%). This group constituted 34% of the patients included in the present study.Conclusions: In contrast to other previous studies, where breast cancers of mixed histological types were included, PgR was notsignificantly associated to prognosis in the ER-positive HER2-negative subgroup in the present study, consisting only of ILC. Theprognostic role of PgR and the clinical usefulness of the luminal A and B-like (HER2-negative) classification (using only Ki67 andPgR) in ILC is still to be further investigated. The prognostic importance of Ki67 and NHG in this subgroup was, however,confirmed also in ILC, and AIB1 might be a new putative prognostic factor. By combining Ki67, NHG, and AIB1, together withlymph node status and tumor size, a group of patients with an excellent prognosis could be identified.
  •  
8.
  • Narbe, Ulrik, et al. (författare)
  • The estrogen receptor coactivator AIB1 is a new putative prognostic biomarker in ER-positive/HER2-negative invasive lobular carcinoma of the breast
  • 2019
  • Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 0167-6806 .- 1573-7217. ; 175:2, s. 305-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: According to the 2017 St Gallen surrogate definitions of the intrinsic subtypes, Ki67, progesterone receptor (PR) and Nottingham histological grade (NHG) are used for prognostic classification of estrogen receptor (ER) positive/HER2-negative breast cancer into luminal A- or luminal B-like. The aim of the present study was to investigate if additional biomarkers, related to endocrine signaling pathways, e.g., amplified in breast cancer 1 (AIB1), androgen receptor (AR), and G protein-coupled estrogen receptor (GPER), can provide complementary prognostic information in a subset of ER-positive/HER-negative invasive lobular carcinoma (ILC). Methods: Biomarkers from 224 patients were analyzed immunohistochemically on tissue microarray. The primary endpoint was breast cancer mortality (BCM), analyzed with 10- and 25-year follow-up (FU). In addition, the prognostic value of gene expression data for these biomarkers was analyzed in three publicly available ILC datasets. Results: AIB1 (high vs. low) was associated to BCM in multivariable analysis (adjusted for age, tumor size, nodal status, NHG, Ki67, luminal-like classification, and adjuvant systemic therapy) with 10-year FU (HR 6.8, 95% CI 2.3–20, P = 0.001) and 25-year FU (HR 3.0, 95% CI 1.1–7.8, P = 0.03). The evidence of a prognostic effect of AIB1 could be confirmed by linking gene expression data to outcome in independent publicly available ILC datasets. AR and GPER were neither associated to BCM with 10-year nor with 25-year FU (P > 0.33). Furthermore, Ki67 and NHG were prognostic for BCM at both 10-year and 25-year FU, whereas PR was not. Conclusions: AIB1 is a new putative prognostic biomarker in ER-positive/HER2-negative ILC.
  •  
9.
  • Qadri, Fatimunnisa, et al. (författare)
  • Acute hypothalamo-pituitary-adrenal axis response to LPS-induced endotoxemia: expression pattern of kinin type B1 and B2 receptors
  • 2016
  • Ingår i: Biological Chemistry. - : Walter de Gruyter GmbH. - 1437-4315 .- 1431-6730. ; 397:2, s. 97-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Bradykinin (BK) and des-Arg(9)-BK are pro-inflammatory mediators acting via B2 (B2R) and B1 (B1R) receptors, respectively. We investigated the role of B2R and B1R in lipopolysaccharide (LPS)-induced hypothalamopituitary-adrenal (HPA) axis activation in SD rats. LPS given intraperitoneally (ip) up-regulated B1R mRNA in the hypothalamus, both B1R and B2R were up-regulated in pituitary and adrenal glands. Receptor localization was performed using immunofluorescence staining. B1R was localized in the endothelial cells, nucleus supraopticus (SON), adenohypophysis and adrenal cortex. B2R was localized nucleus paraventricularis (PVN) and SON, pituitary and adrenal medulla. Blockade of B1R prior to LPS further increased ACTH release and blockade of B1R 1 h after LPS decreased its release. In addition, we evaluated if blockade of central kinin receptors influence the LPS-induced stimulation of hypothalamic neurons. Blockade of both B1R and B2R reduced the LPS-induced c-Fos immunoreactivity in the hypothalamus. Our data demonstrate that a single injection of LPS induced a differential expression pattern of kinin B1R and B2R in the HPA axis. The tissue specific cellular localization of these receptors indicates that they may play a crucial role in the maintenance of body homeostasis during endotoxemia.
  •  
10.
  • Sigurdsson, Valgardur, et al. (författare)
  • Bile Acids Protect Expanding Hematopoietic Stem Cells from Unfolded Protein Stress in Fetal Liver.
  • 2016
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909. ; 18:4, s. 32-522
  • Tidskriftsartikel (refereegranskat)abstract
    • During development, hematopoietic stem cells (HSCs) undergo a rapid expansion in the fetal liver (FL) before settling in the adult bone marrow. We recently reported that proliferating adult HSCs are vulnerable to ER stress caused by accumulation of mis-folded proteins. Here, we find that FL-HSCs, despite an increased protein synthesis rate and a requirement for protein folding, do not upregulate ER chaperones. Instead, bile acids (BAs), secreted from maternal and fetal liver, coordinate to serve as chemical chaperones. Taurocholic acid, the major BA in FL, supports growth of HSCs in vitro by inhibiting protein aggregation. In vivo, reducing BA levels leads to ER stress elevation and accumulation of aggregated proteins and significantly decreases the number of FL-HSCs. Taken together, these findings reveal that BA alleviation of ER stress is a mechanism required for HSC expansion during fetal hematopoiesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy