SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lehsten Veiko) srt2:(2010-2014)"

Sökning: WFRF:(Lehsten Veiko) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lehsten, Dörte, et al. (författare)
  • Modelling the Holocene migrational dynamics of Fagus sylvatica L. and Picea abies (L.) H. Karst
  • 2014
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 23:6, s. 658-668
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Vegetation dynamics and the competitive interactions involved are assumed to restrict the ability of species to migrate. But in most migration modelling approaches disturbance-driven succession and competition processes are reduced to simple assumptions or are even missing. The aim of this study was to test a combination of a migration model and a dynamic vegetation model to estimate the migration of tree species controlled by climate, environment and local species dynamics such as succession and competition. Location Europe. Methods To estimate the effect of vegetation dynamics on the migration of European beech and Norway spruce, we developed a post-process migration tool (LPJ-CATS). This tool integrates outputs of the migration model CATS and the dynamic vegetation model LPJ-GUESS. The model LPJ-CATS relies on a linear dependency between the dispersal kernel and migration rate and is based on the assumption that competition reduces fecundity. Results Simulating potential migration rates with the CATS model, which does not account for competition and disturbance, resulted in mean Holocene migration rates of 435 +/- 55 and 330 +/- 95 m year(-1) for the two species Picea abies and Fagus sylvatica, respectively. With LPJ-CATS, these mean migration rates were reduced to 250 +/- 75 and 170 +/- 60 m year(-1) for spruce and beech, respectively. Moreover, LPJ-CATS simulated migration pathways of these two species that generally comply well with those documented in the palaeo-records. Main conclusions Our 'hybrid' modelling approach allowed for the simulation of generally realistic Holocene migration rates and pathways of the two study species on a continental scale. It suggests that competition can considerably modify spread rates, but also the magnitude of its effect depends on how close climate conditions are to the niche requirements of a particular species.
  •  
2.
  • Archibald, S., et al. (författare)
  • Climate and the inter-annual variability of fire in southern Africa: a meta-analysis using long-term field data and satellite-derived burnt area data
  • 2010
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 19:6, s. 794-809
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim This study investigates inter-annual variability in burnt area in southern Africa and the extent to which climate is responsible for this variation. We compare data from long-term field sites across the region with remotely sensed burnt area data to test whether it is possible to develop a general model. Location Africa south of the equator. Methods Linear mixed effects models were used to determine the effect of rainfall, seasonality and fire weather in driving variation in fire extent between years, and to test whether the effect of these variables changes across the subcontinent and in areas more and less impacted by human activities. Results A simple model including rainfall and seasonality explained 40% of the variance in burnt area between years across 10 different protected areas on the subcontinent, but this model, when applied regionally, indicated that climate had less impact on year-to-year variation in burnt area than would be expected. It was possible to demonstrate that the relative importance of rainfall and seasonality changed as one moved from dry to wetter systems, but most noticeable was the reduction in climatically driven variability of fire outside protected areas. Inter-annual variability is associated with the occurrence of large fires, and large fires are only found in areas with low human impact. Main conclusions This research gives the first data-driven analysis of fire-climate interactions in southern Africa. The regional analysis shows that human impact on fire regimes is substantial and acts to limit the effect of climate in driving variation between years. This is in contrast to patterns in protected areas, where variation in accumulated rainfall and the length of the dry season influence the annual area burnt. Global models which assume strong links between fire and climate need to be re-assessed in systems with high human impact.
  •  
3.
  • Arneth, Almut, et al. (författare)
  • Climate-fire interactions and Savanna ecosystems : A dynamic vegetation modeling study for the African Continent
  • 2010
  • Ingår i: Ecosystem Function in Savannas : Measurement and Modeling at Landscape to Global Scales - Measurement and Modeling at Landscape to Global Scales. - : CRC Press. - 9781439804704 - 9781439804711 ; , s. 463-478
  • Bokkapitel (refereegranskat)abstract
    • Savannas are inherently “disturbed” ecosystems, but the regularly recurring disruptions play such a fundamental ecological role (Scholes and Archer, 1997) that “episodic events” rather than “disturbance” may the more apt terminology. From an atmospheric perspective, fire is the most significant of these episodic events. Fires shape community species composition; tree to grass ratio and nutrient redistribution; and biosphere-atmosphere exchange of trace gases, aerosols, momentum, and energy. Savannas’ estimated mean NPP of 7.2 ± 2.0 t C ha-1 year-1 amounts to nearly two thirds of tropical forest NPP (Grace et al., 2006); but remarkably little is known about Savanna net carbon balance, especially for the African continent (Williams et al., 2007). In the absence of transient changes in the fire regime, such as could be introduced by climate change or fire-driven changes in land cover, Savanna fires do not affect average annual net carbon uptake much, as the carbon released.
  •  
4.
  • Knorr, Wolfgang, et al. (författare)
  • Determinants and predictability of global wildfire emissions
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 12:15, s. 6845-6861
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass burning is one of the largest sources of atmospheric trace gases and aerosols globally. These emissions have a major impact on the radiative balance of the atmosphere and on air quality, and are thus of significant scientific and societal interest. Several datasets have been developed that quantify those emissions on a global grid and offered to the atmospheric modelling community. However, no study has yet attempted to systematically quantify the dependence of the inferred pyrogenic emissions on underlying assumptions and input data. Such a sensitivity study is needed for understanding how well we can currently model those emissions and what the factors are that contribute to uncertainties in those emission estimates. Here, we combine various satellite-derived burned area products, a terrestrial ecosystem model to simulate fuel loads and the effect of fire on ecosystem dynamics, a model of fuel combustion, and various emission models that relate combusted biomass to the emission of various trace gases and aerosols. We carry out simulations with varying parameters for combustion completeness and fuel decomposition rates within published estimates, four different emissions models and three different global burned-area products. We find that variations in combustion completeness and simulated fuel loads have the largest impact on simulated global emissions for most species, except for some with highly uncertain emission factors. Variation in burned-area estimates also contribute considerably to emission uncertainties. We conclude that global models urgently need more field-based data for better parameterisation of combustion completeness and validation of simulated fuel loads, and that further validation and improvement of burned area information is necessary for accurately modelling global wildfire emissions. The results are important for chemical transport modelling studies, and for simulations of biomass burning impacts on the atmosphere under future climate change scenarios.
  •  
5.
  • Lehsten, Veiko, et al. (författare)
  • Modelling burned area in Africa
  • 2010
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 7:10, s. 3199-3214
  • Tidskriftsartikel (refereegranskat)abstract
    • The simulation of current and projected wildfires is essential for predicting crucial aspects of vegetation patterns, biogeochemical cycling as well as pyrogenic emissions across the African continent. This study uses a data-driven approach to parameterize two burned area models applicable to dynamic vegetation models (DVMs) and Earth system models (ESMs). We restricted our analysis to variables for which either projections based on climate scenarios are available, or that are calculated by DVMs, and we consider a spatial scale of one degree as the scale typical for DVMs and ESMs. By using the African continent here as an example, an analogue approach could in principle be adopted for other regions, for global scale dynamic burned area modelling. We used 9 years of data (2000-2008) for the variables: precipitation over the last dry season, the last wet season and averaged over the last 2 years, a fire-danger index (the Nesterov index), population density, and annual proportion of area burned derived from the MODIS MCD45A1 product. Two further variables, tree and herb cover were only available for 2001 as a remote sensing product. Since the effect of fires on vegetation depends strongly on burning conditions, the timing of wildfires is of high interest too, and we were able to relate the seasonal occurrence of wildfires to the daily Nesterov index. We parameterized two generalized linear models (GLMs), one with the full variable set (model VC) and one considering only climate variables (model C). All introduced variables resulted in an increase in model performance. Model VC correctly predicts the spatial distribution and extent of fire prone areas though the total variability is underrepresented. Model VC has a much lower performance in both aspects (correlation coefficient of predicted and observed ratio of burned area: 0.71 for model VC and 0.58 for model C). We expect the remaining variability to be attributed to additional variables which are not available at a global scale and thus not incorporated in this study as well as its coarse resolution. An application of the models using climate hindcasts and projections ranging from 1980 to 2060 resulted in a strong decrease of burned area of ca. 20-25%. Since wildfires are an integral part of land use practices in Africa, their occurrence is an indicator of areas favourable for food production. In absence of other compensating land use changes, their projected decrease can hence be interpreted as a indicator for future loss of such areas.
  •  
6.
  • Lehsten, Veiko, et al. (författare)
  • Wildfires in boreal ecoregions: Evaluating the power law assumption and intra-annual and interannual variations
  • 2014
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 119:1, s. 14-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Wildfires are a major driver of ecosystem development and contributor to carbon emissions in boreal forests. We analyzed the contribution of fires of different fire size classes to the total burned area and suggest a novel fire characteristic, the characteristic fire size, i.e., the fire size class with the highest contribution to the burned area, its relation to bioclimatic conditions, and intra-annual and interannual variation. We used the Canadian National Fire Database (using data from 1960 to 2010) and a novel satellite-based burned area data set (2001 to 2011). We found that the fire size distribution is best explained by a normal distribution in log space in contrast to the power law-based linear fire area relationship which has prevailed in the literature so far. We attribute the difference to previous studies in the scale invariance mainly to the large extent of the investigated ecoregion as well as to unequal binning or limiting the range at which the relationship is analyzed; in this way we also question the generality of the scale invariance for ecoregions even outside the boreal domain. The characteristic fire sizes and the burned area show a weak correlation, indicating different mechanisms behind each feature. Fire sizes are found to depend markedly on the ecoregion and have increased over the last five decades for Canada in total, being most pronounced in the early season. In the late season fire size and area decreased, indicating an earlier start of the fire season. Key Points Fire area-fire number relationship is analyzed for boreal wildfire globally The distribution does not follow a power law as previously assumed The fire size of Canadian wildfires increased strongly over the last decades
  •  
7.
  •  
8.
  • Molinari, Chiara, et al. (författare)
  • Exploring potential drivers of European biomass burning over the Holocene: a data-model analysis
  • 2013
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 22:12, s. 1248-1260
  • Tidskriftsartikel (refereegranskat)abstract
    • AimTo reconstruct spatial and temporal patterns of European fire activity during the Holocene and to explore their potential drivers, by relating biomass burning to simulated biotic and abiotic parameters. LocationEurope. MethodsHolocene fire activity was investigated based on 156 sedimentary charcoal records from lakes and peat bogs across Europe. Charcoal data covering the last 9000 years were statistically compared with palaeoclimate data derived from the Max Planck Institute for Meteorology/University of Wisconsin-Madison Earth System Model, with vegetation and fire indices simulated with the dynamic vegetation model lpj-guess and with two independent scenarios of past anthropogenic land-cover change. ResultsThe combined sedimentary charcoal records suggest that there was little fire activity during the early and the middle Holocene compared with recent millennia. A progressive increase in fire frequency began around 3500cal. yr bp and continues into the late Holocene. Biomass burning rose sharply from 250cal. yr bp onwards, reaching a maximum during the early Industrial Era and then declining abruptly. When considering the whole Holocene, the long-term control of fire is best explained by anthropogenic land-cover change, litter availability and temperature-related parameters. Main conclusionsWhile the general patterns found across Europe suggest the primary role of vegetation, precipitation and temperature-related parameters in explaining fire dynamics during the early Holocene, the increase in fire activity observed in the mid-late Holocene is mainly related to anthropogenic land-cover changes, followed by vegetation and temperature-related parameters. The 20th-century decline in biomass burning seems to be due to increased landscape fragmentation and active fire suppression policies. Our hypothesis that human activities played a primary role in Holocene biomass burning across Europe could be tested by improved palaeoclimate reconstructions and more refined representations of anthropogenic fires in climate and vegetation models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy