SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lei Dewen) "

Sökning: WFRF:(Lei Dewen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Du, Qian, et al. (författare)
  • Porcine circovirus type 2 infection promotes the SUMOylation of nucleophosmin-1 to facilitate the viral circular single-stranded DNA replication
  • 2024
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 20:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication. Different types of DNA viruses employ different mechanisms to replicate their genome DNA. Porcine circovirus type 2 (PCV2) is the most representative circular single-stranded DNA virus that harms the pig industry all over the world. In this study, we found that the PCV2 Cap interacting protein pNPM1 also interacts with PCV2 DNA in a SUMOylated form to promote PCV2 DNA replication. The SUMOylation of pNPM1 at the conserved K263 site is critical for the interaction of pNPM1 with PCV2 DNA and the replication of PCV2 DNA. Furthermore, we found that PCV2 infection promotes the SUMO2/3 mediated SUMOylation of pNPM1, while does not significantly alter the expression level of pNPM1. PCV2 Cap is the major component that promotes pNPM1 SUMOylation by activating ERK/Ubc9/TRIM24 signalings. These results contribute to a better understanding of the replication mechanism of circular single-stranded DNA viruses, particularly PCV2.
  •  
2.
  • Yan, Dongna, et al. (författare)
  • Anthropogenic drivers accelerate the changes of lake microbial eukaryotic communities over the past 160 years
  • 2024
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Human impacts on Earth's atmosphere, hydrosphere, litosphere and biosphere are so significant as to naming a new geological epoch, the Anthropocene. Lakes and their biota are highly sensitive to environmental changes. Among aquatic organisms, microbial eukaryotes play fundamental roles associated with lake ecosystem functioning, food webs, nutrient cycling, and pollutant degradation. However, the response of lake microbial eukaryotic community during the Anthropocene to changes in environmental conditions remain poorly understood. Here, we applied a 18S metabarcoding approach to sedimentary DNA to reconstruct the temporal dynamics of microbial eukaryotic community over the past 160 years. We investigated the influence of environmental conditions and of biotic interactions on the microbial eukaryotes in Sihailongwan Maar Lake, one of the candidate sites of Global boundary Stratotype Section and Point (GSSP) for demarcation of the Anthropocene. Microbial eukaryotes were dominated by dinoflagellates, chlorophytes, ciliates, pirsoniales, rotifers, ochrophytes, apicomplexans and cercozoans that were divided into four functional groups that are photoautotrophs, mixotrophs, consumers and parasites. The predominance of phototrophs and their strong associations with organisms from other trophic levels, confirmed their crucial roles in nutrient cycling, energy flows and ecosystem services in freshwater ecosystems. Abrupt changes in the 1950s in microbial eukaryotic diversity and composition were consistent with changes observed in the pollutants emissions i.e., heavy metals, combustion indices (spheroidal carbonaceous particles, polycyclic aromatic hydrocarbon, Soot F14C), radioactivity indicators (239,240Pu, 129I/127I), nutrients (total organic carbon, total nitrogen, phosphorus), and temperature. Statistical analysis revealed that anthropogenic drivers controlled the temporal dynamic of microbial eukaryotic community. Our findings provide additional biostratigraphy evidence of the impact of environmental change on this lake biota, which further supports the value of this system to characterize the Anthropocene.
  •  
3.
  • Yan, Dongna, et al. (författare)
  • Sedimentary DNA reveals phytoplankton diversity loss in a deep maar lake during the Anthropocene
  • 2024
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590.
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic-driven environmental change, including current climate warming, has influenced lake ecosystems globally during the Anthropocene. Phytoplankton are important indicators of environmental changes in lakes and play a fundamental role in maintaining the functioning and stability of these ecosystems. However, the extent to which lake phytoplankton were affected by anthropogenic or climatic forces during the Anthropocene remains unclear. Here, we investigated the 160-yr-long dynamics of the phytoplankton community (cyanobacteria and eukaryotic microalgae) in response to anthropogenic forcing in Sihailongwan Maar Lake—a candidate for a Global boundary Stratotype Section and Point for demarcation of the Anthropocene—using DNA metabarcoding and traditional paleolimnological approaches. Our results show a significant decline in phytoplankton diversity and an abrupt shift in community composition around the 1950s, corresponding to the beginning of the “Great Acceleration” period. Specifically, phytoplankton taxa coexistence patterns, niche differentiation, and assembly mechanisms changed significantly after the 1950s. Overall, increases in air temperature and anthropogenic forcing appear to be the dominant controls for community reorganization and diversity decline of the phytoplankton from this deep maar lake. A neutral community model suggests that phytoplankton community composition was mainly controlled by stochastic processes before the 1950s; however, as time progressed, deterministic effects driven by anthropogenic global warming increased. The results of this study imply that anthropogenic perturbations have led to a loss of phytoplankton diversity and a further decline in ecological resilience in deep lakes, with likely knock-on effects on the productivity and function of lake ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy