SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leifels Y) srt2:(2010-2014)"

Sökning: WFRF:(Leifels Y) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chakraborty, S., et al. (författare)
  • Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb breakup
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Konferensbidrag (refereegranskat)abstract
    • Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s) - νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al. © Owned by the authors, published by EDP Sciences, 2014.
  •  
2.
  • Rahaman, A., et al. (författare)
  • Study of ground state wave-function of the Neutron-rich 29,30Na isotopes through coulomb breakup
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Konferensbidrag (refereegranskat)abstract
    • Coulomb breakup of unstable neutron rich nuclei 29,30Na around the 'island of inversion' has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s) νs1/2 and 29Na(g.s) νs1/2,respectively. © Owned by the authors, published by EDP Sciences, 2014.
  •  
3.
  •  
4.
  •  
5.
  • Golosio, B., et al. (författare)
  • The FIRST experiment for nuclear fragmentation measurements at GSI
  • 2011
  • Ingår i: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE. ; , s. 2277-2280
  • Konferensbidrag (refereegranskat)abstract
    • Nuclear fragmentation processes are relevant in different fields of physics concerning both basic research and applications. FIRST (Fragmentation of Ions Relevant for Space and Therapy) is an experiment aimed at the measurement of double differential cross sections (DDCS), with respect to kinetic energy and scattering polar angle, of nuclear fragmentation processes relevant for hadron therapy and for space radiation protection applications, in the energy range between 100 and 1000 MeV/u. The experiment was mounted at the GSI laboratories of Darmstadt, in Germany. A first data taking was performed in August 2011, using 400 MeV/u 12C on carbon and gold targets. In this work we present a description of the experimental apparatus and some figures from the data acquisition and from the preliminary work on data analysis
  •  
6.
  • Pawlowski, P., et al. (författare)
  • Neutron recognition in the LAND detector for large neutron multiplicity
  • 2012
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 694, s. 47-54
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment. (C) 2012 Elsevier B.V. All rights reserved.
  •  
7.
  • Pleskac, R., et al. (författare)
  • The FIRST experiment at GSI
  • 2012
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 678, s. 130-138
  • Tidskriftsartikel (refereegranskat)abstract
    • The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSl laboratory in Darmstadt has been designed for the measurement of ion fragmentation crosssections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon C-12 beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an already existing setup made of a dipole magnet (ALADiN). a time projection chamber (TP-MUSIC IV), a neutron detector (LAND) and a time of flight scintillator system (TOFWALL). This pre-existing setup has been integrated with newly designed detectors in the Interaction Region, around the carbon target placed in a sample changer. The new detectors are a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger scintillator system optimized for the detection of light fragments emitted at large angles. In this paper we review the experimental setup, then we present the simulation software, the data acquisition system and finally the trigger strategy of the experiment.
  •  
8.
  • Rescigno, R., et al. (författare)
  • Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 767, s. 34-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy