SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leonard Dag 1975 ) srt2:(2019)"

Sökning: WFRF:(Leonard Dag 1975 ) > (2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farias, Fabiana H. G., et al. (författare)
  • A rare regulatory variant in the MEF2D gene affects gene regulation and splicing and is associated with a SLE sub-phenotype in Swedish cohorts
  • 2019
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 27, s. 432-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE) is an autoimmune disorder with heterogeneous clinical presentation and complex etiology involving the interplay between genetic, epigenetic, environmental and hormonal factors. Many common SNPs identified by genome wide-association studies (GWAS) explain only a small part of the disease heritability suggesting the contribution from rare genetic variants, undetectable in GWAS, and complex epistatic interactions. Using targeted re-sequencing of coding and conserved regulatory regions within and around 215 candidate genes selected on the basis of their known role in autoimmunity and genes associated with canine immune-mediated diseases, we identified a rare regulatory variant rs200395694:G > T located in intron 4 of the MEF2D gene encoding the myocyte-specific enhancer factor 2D transcription factor and associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls, p = 0.014, CI = 1.1-10). Fisher's exact test revealed an association between the genetic variant and a triad of disease manifestations including Raynaud, anti-U1-ribonucleoprotein (anti-RNP), and anti-Smith (anti-Sm) antibodies (p = 0.00037) among the patients. The DNA-binding activity of the allele was further studied by EMSA, reporter assays, and minigenes. The region has properties of an active cell-specific enhancer, differentially affected by the alleles of rs200395694:G > T. In addition, the risk allele exerts an inhibitory effect on the splicing of the alternative tissue-specific isoform, and thus may modify the target gene set regulated by this isoform. These findings emphasize the potential of dissecting traits of complex diseases and correlating them with rare risk alleles with strong biological effects.
  •  
2.
  • Almlöf, Jonas Carlsson, et al. (författare)
  • Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus
  • 2019
  • Ingår i: Human Genetics. - : SPRINGER. - 0340-6717 .- 1432-1203. ; 138:2, s. 141-150
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic lupus erythematosus (SLE, OMIM 152700) is a systemic autoimmune disease with a complex etiology. The mode of inheritance of the genetic risk beyond familial SLE cases is currently unknown. Additionally, the contribution of heterozygous variants in genes known to cause monogenic SLE is not fully understood. Whole-genome sequencing of DNA samples from 71 Swedish patients with SLE and their healthy biological parents was performed to investigate the general genetic risk of SLE using known SLE GWAS risk loci identified using the ImmunoChip, variants in genes associated to monogenic SLE, and the mode of inheritance of SLE risk alleles in these families. A random forest model for predicting genetic risk for SLE showed that the SLE risk variants were mainly inherited from one of the parents. In the 71 patients, we detected a significant enrichment of ultra-rare (0.1%) missense and nonsense mutations in 22 genes known to cause monogenic forms of SLE. We identified one previously reported homozygous nonsense mutation in the C1QC (Complement C1q C Chain) gene, which explains the immunodeficiency and severe SLE phenotype of that patient. We also identified seven ultra-rare, coding heterozygous variants in five genes (C1S, DNASE1L3, DNASE1, IFIH1, and RNASEH2A) involved in monogenic SLE. Our findings indicate a complex contribution to the overall genetic risk of SLE by rare variants in genes associated with monogenic forms of SLE. The rare variants were inherited from the other parent than the one who passed on the more common risk variants leading to an increased genetic burden for SLE in the child. Higher frequency SLE risk variants are mostly passed from one of the parents to the offspring affected with SLE. In contrast, the other parent, in seven cases, contributed heterozygous rare variants in genes associated with monogenic forms of SLE, suggesting a larger impact of rare variants in SLE than hitherto reported.
  •  
3.
  • Frodlund, Martina, et al. (författare)
  • The majority of Swedish systemic lupus erythematosus patients are still affected by irreversible organ impairment : factors related to damage accrual in two regional cohorts
  • 2019
  • Ingår i: Lupus. - : SAGE PUBLICATIONS LTD. - 0961-2033 .- 1477-0962. ; 28:10, s. 1261-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Although the survival of patients with systemic lupus erythematosus (SLE) has improved, irreversible organ damage remains a critical concern. We aimed to characterize damage accrual and its clinical associations and causes of death in Swedish patients. Methods Accumulation of damage was evaluated in 543 consecutively recruited and well-characterized cases during 1998-2017. The Systemic Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology damage index (SDI) was used to estimate damage. Results Organ damage (SDI >= 1) was observed in 59%, and extensive damage (SDI >= 3) in 25% of cases. SDI >= 1 was significantly associated with higher age at onset, SLE duration, the number of fulfilled SLICC criteria, neurologic disorder, antiphospholipid antibody syndrome (APS), hypertension, hyperlipidemia, depression and secondary Sjogren's syndrome (SS). In addition, SDI >= 3 was associated with serositis, renal and haematological disorders and interstitial lung disease. A multiple regression model identified not only well-known risk factors like APS, antihypertensives and corticosteroids, but pericarditis, haemolytic anaemia, lymphopenia and myositis as being linked to SDI. Malignancy, infection and cardiovascular disease were the leading causes of death. Conclusions After a mean SLE duration of 17 years, the majority of today's Swedish SLE patients have accrued damage. We confirm previous observations and report some novel findings regarding disease phenotypes and damage accrual.
  •  
4.
  • Imgenberg-Kreuz, Juliana, et al. (författare)
  • Shared and Unique Patterns of DNA Methylation in Systemic Lupus Erythematosus and Primary Sjogren's Syndrome
  • 2019
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To performa cross-comparative analysis of DNA methylation in patients with systemic lupus erythematosus (SLE), patients with primary Sjogren's syndrome (pSS), and healthy controls addressing the question of epigenetic sharing and aiming to detect disease-specific alterations. Methods: DNA extracted from peripheral blood from 347 cases with SLE, 100 cases with pSS, and 400 healthy controls were analyzed on the Human Methylation 450k array, targeting 485,000 CpG sites across the genome. A linear regression model including age, sex, and blood cell type distribution as covariates was fitted, and association p-values were Bonferroni corrected. A random forest machine learning classifier was designed for prediction of disease status based on DNA methylation data. Results: We established a combined set of 4,945 shared differentially methylated CpG sites (DMCs) in SLE and pSS compared to controls. In pSS, hypomethylation at type I interferon induced genes was mainly driven by patients who were positive for Ro/SSA and/or La/SSB autoantibodies. Analysis of differential methylation between SLE and pSS identified 2,244 DMCs with a majority of sites showing decreased methylation in SLE compared to pSS. The random forest classifier demonstrated good performance in discerning between disease status with an area under the curve (AUC) between 0.83 and 0.96. Conclusions: The majority of differential DNA methylation is shared between SLE and pSS, however, important quantitative differences exist. Our data highlight neutrophil dysregulation as a shared mechanism, emphasizing the role of neutrophils in the pathogenesis of systemic autoimmune diseases. The current study provides evidence for genes and molecular pathways driving common and disease-specific pathogenic mechanisms.
  •  
5.
  • Odqvist, Lina, et al. (författare)
  • Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus
  • 2019
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 78:10, s. 1363-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Genetic variations in TNFAIP3 (A20) de-ubiquitinase (DUB) domain increase the risk of systemic lupus erythematosus (SLE) and rheumatoid arthritis. A20 is a negative regulator of NF-κB but the role of its DUB domain and related genetic variants remain unclear. We aimed to study the functional effects of A20 DUB-domain alterations in immune cells and understand its link to SLE pathogenesis. Methods: CRISPR/Cas9 was used to generate human U937 monocytes with A20 DUB-inactivating C103A knock-in (KI) mutation. Whole genome RNA-sequencing was used to identify differentially expressed genes between WT and C103A KI cells. Functional studies were performed in A20 C103A U937 cells and in immune cells from A20 C103A mice and genotyped healthy individuals with A20 DUB polymorphism rs2230926. Neutrophil extracellular trap (NET) formation was addressed ex vivo in neutrophils from A20 C103A mice and SLE-patients with rs2230926. Results: Genetic disruption of A20 DUB domain in human and murine myeloid cells did not give rise to enhanced NF-κB signalling. Instead, cells with C103A mutation or rs2230926 polymorphism presented an upregulated expression of PADI4, an enzyme regulating protein citrullination and NET formation, two key mechanisms in autoimmune pathology. A20 C103A cells exhibited enhanced protein citrullination and extracellular trap formation, which could be suppressed by selective PAD4 inhibition. Moreover, SLE-patients with rs2230926 showed increased NETs and increased frequency of autoantibodies to citrullinated epitopes. Conclusions: We propose that genetic alterations disrupting the A20 DUB domain mediate increased susceptibility to SLE through the upregulation of PADI4 with resultant protein citrullination and extracellular trap formation.
  •  
6.
  • Rönnblom, Lars, et al. (författare)
  • Interferon pathway in SLE : one key to unlocking the mystery of the disease
  • 2019
  • Ingår i: Lupus Science and Medicine. - : BMJ Publishing Group Ltd. - 2053-8790. ; 6:1
  • Forskningsöversikt (refereegranskat)abstract
    • SLE is characterised by an activation of the interferon (IFN) system, which leads to an increased expression of IFN-regulated genes. The reasons behind the IFN signature in SLE are (1) the existence of endogenous IFN inducers, (2) activation of several IFN-producing cell types, (3) production of many different IFNs, (4) a genetic setup promoting IFN production and (5) deficient negative feedback mechanisms. The consequences for the immune system is a continuous stimulation to an immune response, and for the patient a number of different organ manifestations leading to typical symptoms for SLE. In the current review, we will present the existing knowledge of the IFN system and pathway activation in SLE. We will also discuss how this information can contribute to our understanding of both the aetiopathogenesis and some organ manifestations of the disease. We will put forward some issues that are unresolved and should be clarified in order to make a proper stratification of patients with SLE, which seems important when selecting a therapy aiming to downregulate the IFN system.
  •  
7.
  • Segerberg, Filip, et al. (författare)
  • Autoantibodies to Killer Cell Immunoglobulin-Like Receptors in Patients With Systemic Lupus Erythematosus Induce Natural Killer Cell Hyporesponsiveness
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer (NK) cell cytotoxicity toward self-cells is restrained by the inhibitory HLA class I-binding receptors CD94/NKG2A and the killer cell immunoglobulin-like receptors (KIRs). CD94/NKG2A and KIRs are also essential for NK cell education, which is a dynamic functional maturation process where a constitutive binding of inhibitory receptors to cognate HLA class I molecules is required for NK cells to maintain their full cytotoxic capacity. Previously, we described autoantibodies to CD94/NKG2A in patients with systemic lupus erythematosus (SLE). In this study we analyzed sera from 191 patients with SLE, 119 patients with primary Sjogren's syndrome (pSS), 48 patients with systemic sclerosis (SSc), and 100 healthy donors (HD) for autoantibodies to eight different KIRs. Anti-KIR autoantibodies were identified in sera from 23.0% of patients with SLE, 10.9% of patients with pSS, 12.5% of patients with SSc, and 3.0% of HD. IgG from anti-KIR-positive SLE patients reduced the degranulation and cytotoxicity of NK cells toward K562 tumor cells. The presence of anti-KIR-autoantibodies reacting with >3 KIRs was associated with an increased disease activity (p < 0.0001), elevated serum levels of IFN-alpha (p < 0.0001), nephritis (p = 0.001), and the presence of anti-Sm (p = 0.007), and anti-RNP (p = 0.003) autoantibodies in serum. Together these findings suggest that anti-KIR autoantibodies may contribute to the reduced function of NK cells in SLE patients, and that a defective NK cell function may be a risk factor for the development of lupus nephritis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Leonard, Dag, 1975- (7)
Rönnblom, Lars (5)
Sjöwall, Christopher (4)
Sandling, Johanna K. (4)
Syvänen, Ann-Christi ... (4)
Gunnarsson, Iva (3)
visa fler...
Svenungsson, Elisabe ... (3)
Eloranta, Maija-Leen ... (3)
Alexsson, Andrei (2)
Jönsen, Andreas (2)
Tandre, Karolina (2)
Nordmark, Gunnel (2)
Rantapää-Dahlqvist, ... (2)
Bengtsson, Anders A. (2)
Reid, Sarah (2)
Bengtsson, Anders (1)
Kozyrev, Sergey V. (1)
Abramov, Sergei (1)
Farias, Fabiana H. G ... (1)
Dahlqvist, Johanna, ... (1)
Wilbe, Maria (1)
Pielberg, Gerli (1)
Andersson, Göran (1)
Lindblad-Toh, Kersti ... (1)
Carlsson Almlöf, Jon ... (1)
Hansson-Hamlin, Hele ... (1)
Dahlström, Örjan (1)
Vaarala, Outi (1)
Carlsten, Mattias (1)
Almlöf, Jonas Carlss ... (1)
Nystedt, Sara (1)
Grosso, Giorgia (1)
Mattsson, Johan (1)
Kastbom, Alf (1)
Frodlund, Martina (1)
Wetterö, Jonas (1)
Sjöwall, Christopher ... (1)
Imgenberg-Kreuz, Jul ... (1)
Johansson, Patrik (1)
Hagberg, Niklas, 197 ... (1)
Rhedin, Magdalena (1)
Öberg, Lisa (1)
Lundtoft, Christian (1)
Hjorton, Karin (1)
Thörn, Kristofer (1)
Odqvist, Lina (1)
Jevnikar, Zala (1)
Riise, Rebecca (1)
Yrlid, Linda (1)
Jackson, Sonya (1)
visa färre...
Lärosäte
Uppsala universitet (7)
Linköpings universitet (5)
Karolinska Institutet (4)
Lunds universitet (3)
Umeå universitet (2)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy