SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lerner Ulf) srt2:(2020-2024)"

Sökning: WFRF:(Lerner Ulf) > (2020-2024)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Souza, P. P. C., et al. (författare)
  • Stimulation of Osteoclast Formation by Oncostatin M and the Role of WNT16 as a Negative Feedback Regulator
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 23:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Oncostatin M (OSM), which belongs to the IL-6 family of cytokines, is the most potent and effective stimulator of osteoclast formation in this family, as assessed by different in vitro assays. Osteoclastogenesis induced by the IL-6 type of cytokines is mediated by the induction and paracrine stimulation of the osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand (RANKL), expressed on osteoblast cell membranes and targeting the receptor activator of nuclear factor kappa-B (RANK) on osteoclast progenitor cells. The potent effect of OSM on osteoclastogenesis is due to an unusually robust induction of RANKL in osteoblasts through the OSM receptor (OSMR), mediated by a JAK-STAT/MAPK signaling pathway and by unique recruitment of the adapter protein Shc1 to the OSMR. Gene deletion of Osmr in mice results in decreased numbers of osteoclasts and enhanced trabecular bone caused by increased trabecular thickness, indicating that OSM may play a role in physiological regulation of bone remodeling. However, increased amounts of OSM, either through administration of recombinant protein or of adenoviral vectors expressing Osm, results in enhanced bone mass due to increased bone formation without any clear sign of increased osteoclast numbers, a finding which can be reconciled by cell culture experiments demonstrating that OSM can induce osteoblast differentiation and stimulate mineralization of bone nodules in such cultures. Thus, in vitro studies and gene deletion experiments show that OSM is a stimulator of osteoclast formation, whereas administration of OSM to mice shows that OSM is not a strong stimulator of osteoclastogenesis in vivo when administered to adult animals. These observations could be explained by our recent finding showing that OSM is a potent stimulator of the osteoclastogenesis inhibitor WNT16, acting in a negative feedback loop to reduce OSM-induced osteoclast formation.
  •  
2.
  • Henning, Petra, 1974, et al. (författare)
  • Stimulation of osteoclast formation and bone resorption by glucocorticoids: Synergistic interactions with the calcium regulating hormones parathyroid hormone and 1,25(OH)2-vitamin D3
  • 2022
  • Ingår i: Vitamins and Hormones Vol 120 Parathyroid Hormone. - : Elsevier. - 0083-6729. ; , s. 231-270
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Osteoporosis is a significant health problem, with skeletal fractures increasing morbidity and mortality. Excess glucocorticoids (GC) represents the leading cause of secondary osteoporosis. The first phase of glucocorticoid-induced osteoporosis is increased bone resorption. In this Chapter, in vitro studies of the direct glucocorticoid receptor (GR) mediated cellular effects of GC on osteoclasts to affect bone resorption and indirect effects on osteoblast lineage cells to increase the RANKL/OPG ratio and stimulate osteoclastogenesis and bone resorption are reviewed in detail, together with detailed descriptions of in vivo effects of GC in different portions of the skeleton in research animals and humans. Brief sections are devoted to contrasting functions of GC in osteonecrosis, vitamin D formation, in vitro and in vivo bone resorptive actions dependent on vitamin D receptor and vitamin D toxicity, as well as the molecular basis of GR action. Included are also more detailed assessments of the interactions of GC with the major calcium regulating hormones, 1,25(OH)2-vitamin D3 and parathyroid hormone, describing the in vitro increases in RANKL/OPG ratios, osteoclastogenesis and synergistic bone resorption that occurs when GC is combined with either 1,25(OH)2-vitamin D3 or parathyroid hormone. Additionally, a molecular basic for the synergistic interaction of GC with 1,25(OH)2-vitamin D3 is provided along with a suggested molecular basic for the interaction between GC and parathyroid hormone.
  •  
3.
  • Henning, Petra, 1974, et al. (författare)
  • The novel cytotoxic polybisphosphonate osteodex decreases bone resorption by enhancing cell death of mature osteoclasts without affecting osteoclastogenesis of RANKL-stimulated mouse bone marrow macrophages
  • 2024
  • Ingår i: INVESTIGATIONAL NEW DRUGS. - : Springer. - 0167-6997 .- 1573-0646.
  • Tidskriftsartikel (refereegranskat)abstract
    • It has previously been demonstrated that the polybisphosphonate osteodex (ODX) inhibits bone resorption in organ-cultured mouse calvarial bone. In this study, we further investigate the effects by ODX on osteoclast differentiation, formation, and function in several different bone organ and cell cultures. Zoledronic acid (ZOL) was used for comparison. In retinoid-stimulated mouse calvarial organ cultures, ODX and ZOL significantly reduced the numbers of periosteal osteoclasts without affecting Tnfsf11 or Tnfrsf11b mRNA expression. ODX and ZOL also drastically reduced the numbers of osteoclasts in cell cultures isolated from the calvarial bone and in vitamin D3-stimulated mouse crude bone marrow cell cultures. These data suggest that ODX can inhibit osteoclast formation by inhibiting the differentiation of osteoclast progenitor cells or by directly targeting mature osteoclasts. We therefore assessed if osteoclast formation in purified bone marrow macrophage cultures stimulated by RANKL was inhibited by ODX and ZOL and found that the initial formation of mature osteoclasts was not affected, but that the bisphosphonates enhanced cell death of mature osteoclasts. In agreement with these findings, ODX and ZOL did not affect the mRNA expression of the osteoclastic genes Acp5 and Ctsk and the osteoclastogenic transcription factor Nfatc1. When bone marrow macrophages were incubated on bone slices, ODX and ZOL inhibited RANKL-stimulated bone resorption. In conclusion, ODX does not inhibit osteoclast formation but inhibits osteoclastic bone resorption by decreasing osteoclast numbers through enhanced cell death of mature osteoclasts.
  •  
4.
  • Henning, Petra, 1974, et al. (författare)
  • Toll-like receptor-2 induced inflammation causes local bone formation and activates canonical Wnt signaling.
  • 2024
  • Ingår i: Frontiers in immunology. - : Frontiers Media S.A.. - 1664-3224. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.
  •  
5.
  • Henning, Petra, 1974, et al. (författare)
  • WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M
  • 2021
  • Ingår i: Journal of Inflammation Research. ; 14, s. 4723-4741
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family. Methods: The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice. Results: We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16-/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts. Conclusion: These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSMinduced osteoclast formation in the calvarial bone cells, but not in the bone marrow.
  •  
6.
  • Kristjansdottir, Hallgerdur Lind, et al. (författare)
  • Anemia is associated with increased risk of non-vertebral osteoporotic fractures in elderly men: the MrOS Sweden cohort
  • 2022
  • Ingår i: Archives of Osteoporosis. - : Springer Science and Business Media LLC. - 1862-3522 .- 1862-3514. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study includes 1005 men from the Gothenburg part of the Osteoporotic Fracture in Men Study (MrOS). Included are 66 men with anemia (hemoglobin < 130 g/L). The follow-up time was up to 16 years, and the main results are that anemia is associated with all fractures and non-vertebral osteoporotic fractures. Introduction Anemia and osteoporotic fractures are conditions that are associated with increased morbidity and mortality. Clinical studies have suggested that anemia can be used as a predictor of future osteoporotic fractures. Method Men from the Osteoporotic Fractures in Men Study (MrOS) Sweden, Gothenburg, with available hemoglobin (Hb) values (n = 1005, median age 75.3 years (SD 3.2)), were included in the current analyses. Of these, 66 suffered from anemia, defined as Hb < 130 g/L. Median follow-up time for fracture was 10.1 years and the longest follow-up time was 16.1 years. Results Men with anemia had, at baseline, experienced more falls and had a higher prevalence of diabetes, cancer, prostate cancer, hypertension, and stroke. Anemia was not statistically significantly associated with bone mineral density (BMD). Men with anemia had higher serum levels of fibroblast growth factor 23 (iFGF23) (p < 0.001) and phosphate (p = 0.001) and lower serum levels of testosterone (p < 0.001) and estradiol (p < 0.001). Moreover, men with anemia had an increased risk of any fracture (hazard ratio (HR) 1.97, 95% CI 1.28-3.02) and non-vertebral osteoporotic fracture (HR 2.15, 95% CI 1.18-3.93), after adjustment for age and total hip BMD, in 10 years. The risk for any fracture was increased in 10 and 16 years independently of falls, comorbidities, inflammation, and sex hormones. The age-adjusted risk of hip fracture was increased in men with anemia (HR 2.32, 95% CI 1.06-5.12), in 10 years, although this was no longer statistically significant after further adjustment for total hip BMD. Conclusions Anemia is associated with an increased risk for any fracture and non-vertebral osteoporotic fracture in elderly men with a long follow-up time. The cause is probably multifactorial and our results support that anemia can be used as a predictor for future fracture.
  •  
7.
  • Kristjansdottir, Hallgerdur Lind, et al. (författare)
  • High Plasma Erythropoietin Predicts Incident Fractures in Elderly Men with Normal Renal Function : The MrOS Sweden Cohort
  • 2020
  • Ingår i: Journal of Bone and Mineral Research. - : WILEY. - 0884-0431 .- 1523-4681. ; 35:2, s. 298-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Preclinical studies on the role of erythropoietin (EPO) in bone metabolism are contradictory. Regeneration models indicate an anabolic effect on bone healing, whereas models on physiologic bone remodeling indicate a catabolic effect on bone mass. No human studies on EPO and fracture risk are available. It is known that fibroblast growth factor 23 (FGF23) affects bone mineralization and that serum concentration of FGF23 is higher in men with decreased estimated glomerular filtration rate (eGFR). Recently, a direct association between EPO and FGF23 has been shown. We have explored the potential association between EPO and bone mineral density (BMD), fracture risk, and FGF23 in humans. Plasma levels of EPO were analyzed in 999 men (aged 69 to 81 years), participating in the Gothenburg part of the population-based Osteoporotic Fractures in Men (MrOS) study, MrOS Sweden. The mean +/- SD EPO was 11.5 +/- 9.0 IU/L. Results were stratified by eGFR 60 mL/min. For men with eGFR >= 60 mL/min (n = 728), EPO was associated with age (r = 0.13, p < 0.001), total hip BMD (r = 0.14, p < 0.001), intact (i)FGF23 (r = 0.11, p = 0.004), and osteocalcin (r = -0.09, p = 0.022). The association between total hip BMD and EPO was independent of age, body mass index (BMI), iFGF23, and hemoglobin (beta = 0.019, p < 0.001). During the 10-year follow-up, 164 men had an X-ray-verified fracture, including 117 major osteoporotic fractures (MOF), 39 hip fractures, and 64 vertebral fractures. High EPO was associated with higher risk for incident fractures (hazard ratio [HR] = 1.43 per tertile EPO, 95% confidence interval [CI] 1.35-1.63), MOF (HR = 1.40 per tertile EPO, 95% CI 1.08-1.82), and vertebral fractures (HR = 1.42 per tertile EPO, 95% CI 1.00-2.01) in a fully adjusted Cox regression model. In men with eGFR<60 mL/min, no association was found between EPO and BMD or fracture risk. We here demonstrate that high levels of EPO are associated with increased fracture risk and increased BMD in elderly men with normal renal function.
  •  
8.
  • Kristjansdottir, Hallgerdur Lind, et al. (författare)
  • High platelet count is associated with low bone mineral density: The MrOS Sweden cohort.
  • 2021
  • Ingår i: Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. - : Springer Science and Business Media LLC. - 1433-2965 .- 0937-941X. ; 32:5, s. 865-871
  • Tidskriftsartikel (refereegranskat)abstract
    • In elderly ambulatory men, high platelet and high neutrophil counts are related to low bone mineral density (BMD), after adjustment for relevant covariates. Low hemoglobin (hgb) is even associated with low BMD, but this relationship seems to be dependent on estradiol and osteocalcin.Blood and bone cells exist in close proximity to each other in the bone marrow. Accumulating evidence, from both preclinical and clinical studies, indicates that these cell types are interconnected. Our hypothesis was that BMD measurements are associated with blood count variables and bone remodeling markers.We analyzed blood count variables, bone remodeling markers, and BMD, in subjects from the MrOS cohort from Gothenburg, Sweden. Men with at least one blood count variable (hgb, white blood cell count, or platelet count) analyzed were included in the current analysis (n=1005), median age 75.3years (range 69-81years).Our results show that high platelet counts were related to low BMD at all sites (total hip BMD; r=-0.11, P=0.003). No statistically significant association was seen between platelet counts and bone remodeling markers. Neutrophil counts were negatively associated with total body BMD (r=-0.09, P=0.006) and total hip BMD (r=-0.08, P=0.010), and positively related to serum ALP (r=0.15, P<0.001). Hgb was positively related to total hip BMD (r=0.16, P<0.001), and negatively to serum osteocalcin (r=-0.13, P<0.001). The association between platelet and neutrophil counts and total hip BMD was statistically significant after adjustments for other covariates, but the association between hgb and total hip BMD was dependent on estradiol and osteocalcin.Our observations support the hypothesis of an interplay between blood and bone components.
  •  
9.
  • Leguizamon, N. D., et al. (författare)
  • Phytocystatin CsinCPI-2 Reduces Osteoclastogenesis and Alveolar Bone Loss
  • 2022
  • Ingår i: Journal of Dental Research. - : SAGE Publications. - 0022-0345 .- 1544-0591. ; 101:2, s. 216-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontal disease (PD) is a polymicrobial chronic inflammatory condition of the supporting tissues around the teeth, leading to the destruction of surrounding connective tissue. During the progression of PD, osteoclasts play a crucial role in the resorption of alveolar bone that eventually leads to the loss of teeth if the PD is left untreated. Therefore, the development of antiresorptive therapies targeting bone-resorbing cells will significantly benefit the treatment of PD. Here, we demonstrate the inhibitory effect of CsinCPI-2, a novel cysteine peptidase inhibitor from the orange tree, on periodontitis-induced inflammation, alveolar bone loss, and osteoclast differentiation. Using the ligature-induced periodontitis model in mice, we show that treatment with CsinCPI-2 (0.8 mu g/g of body weight) significantly reduced inflammatory cell infiltrate in the connective tissue and prevented the loss of alveolar bone mass (BV/TV) caused by PD, effects associated with diminished numbers of TRAP-positive multinucleated cells. Furthermore, CsinCPI-2 significantly downregulated the numbers of inflammatory cells expressing CD3, CD45, MAC387, and IL-1 beta. In vitro, CsinCPI-2 inhibited RANKL-induced TRAP+ multinucleated osteoclast formation in mouse bone marrow macrophage cultures in a concentration-dependent manner. This effect was not due to cytotoxicity, as demonstrated by the MTT assay. CsinCPI-2 inhibited RANKL-induced mRNA expression of Acp5, Calcr, and Ctsk, as well as the RANKL-induced upregulation of Nfatc1, a crucial transcription factor for osteoclast differentiation. Based on our findings, CsinCPI-2 prevents bone loss induced by PD by controlling the inflammatory process and acting directly on osteoclastogenesis, suggesting an interesting potential for CsinCPI-2 in the strategy for PD treatment.
  •  
10.
  • Lima Teixeira, Jorge F., et al. (författare)
  • Osteoprotective effect by interleukin-4 (IL-4) on lipoprotein-induced periodontitis
  • 2023
  • Ingår i: Cytokine. - 1043-4666 .- 1096-0023. ; 172
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoproteins are immunostimulatory bacterial components suggested to participate in inflammation-induced bone loss in periodontal disease through stimulation of osteoclast differentiation. Toll-like receptor 2 activation by Pam2CSK4 (PAM2), known to mimic bacterial lipoproteins, was previously shown to enhance periodontal bone resorption in mice. The anti-inflammatory cytokine interleukin-4 (IL-4) is a known inhibitor of RANKL-induced bone resorption in vitro. Here, we have investigated whether IL-4 could decrease PAM2-induced periodontal bone loss and osteoclastogenesis in vivo. In a model of periodontitis induced by gingival injections of PAM2 in mice, concomitant injections of IL-4 reduced bone loss. Histologically, IL-4 reduced the recruitment of inflammatory cells and the formation of TRAP+ osteoclasts stimulated by PAM2. Mouse bone marrow macrophages (BMMs) and neonatal calvarial osteoblasts were used to assess the effect of IL-4 on PAM2-induced osteoclastogenesis in vitro. In RANKL-primed BMMs stimulated by PAM2 Nfatc1, Ctsk, and Acp5 gene expression was up-regulated and resulted in robust formation of TRAP+ multinucleated osteoclasts, effects which were impaired by IL-4. These effects were mediated by impairment in PAM2-induced c-fos expression. In primary calvarial osteoblast cultures, IL-4 decreased PAM2-induced Tnfsf11 (encoding RANKL) mRNA and enhanced Tnfrsf11b (encoding OPG) expression. Our data demonstrate that the osteoprotective effect by IL-4 on lipoprotein-induced periodontal disease occurs through the inhibition of osteoclastogenesis by three mechanisms, one by acting directly on osteoclast progenitors, another by acting indirectly through decreasing the expression of osteoclast-regulating cytokines in osteoblasts and a third by decreasing inflammation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (16)
bokkapitel (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lerner, Ulf H (18)
Ohlsson, Claes, 1965 (9)
Movérare-Skrtic, Sof ... (9)
Westerlund, Anna, 19 ... (5)
Lorentzon, Mattias, ... (4)
Nethander, Maria, 19 ... (3)
visa fler...
Mellström, Dan, 1945 (3)
Vandenput, Liesbeth, ... (2)
Johansson, Peter (2)
Karlsson, M (2)
Lindholm, Catharina, ... (2)
Herlitz, Hans, 1946 (2)
Engdahl, Cecilia, 19 ... (2)
Lagerquist, Marie K (2)
Tuckermann, J (2)
Johansson, P. (1)
Karlsson, Magnus (1)
Tuomi, Tiinamaija (1)
Johansson, Helena, 1 ... (1)
Nilsson, Sten (1)
Lehtimaki, T. (1)
Makitie, O (1)
Rivadeneira, F (1)
Mäkitie, Outi (1)
Stefansson, Kari (1)
Koskela, Antti (1)
Tuukkanen, Juha (1)
Herlitz, Hans (1)
Brunak, Søren (1)
Langhammer, Arnulf (1)
Costantini, A (1)
Carlsten, Hans, 1954 (1)
Voelkl, J (1)
Erikstrup, Christian (1)
Grahnemo, Louise (1)
Ljunggren, Östen (1)
Pereira, R.C (1)
Engström-Ruud, Linda (1)
Lu, Tianyuan (1)
Gabrielsen, Maiken E (1)
Hveem, Kristian (1)
Richards, J Brent (1)
Coward, Eivind (1)
Pedersen, Ole Birger ... (1)
Pettersson-Kymmer, U ... (1)
Zhou, S. R. (1)
Lundberg, Pernilla, ... (1)
Kampe, A (1)
Williams, G. R. (1)
Ullum, Henrik (1)
visa färre...
Lärosäte
Göteborgs universitet (18)
Umeå universitet (4)
Lunds universitet (3)
Karolinska Institutet (3)
Uppsala universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (18)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy