SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lesca G.) srt2:(2020-2024)"

Sökning: WFRF:(Lesca G.) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gruhl, T., et al. (författare)
  • Ultrafast structural changes direct the first molecular events of vision
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 615, s. 939-944
  • Tidskriftsartikel (refereegranskat)abstract
    • Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)(1). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation(2), thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature(3) to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.
  •  
2.
  • Chatron, N., et al. (författare)
  • Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy
  • 2020
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:5, s. 1447-1461
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1(-/-) mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the c-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele.
  •  
3.
  •  
4.
  • Baumgartner, T., et al. (författare)
  • A survey of the European Reference Network EpiCARE on clinical practice for selected rare epilepsies
  • 2021
  • Ingår i: Epilepsia Open. - : Wiley. - 2470-9239. ; 6:1, s. 160-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Clinical care of rare and complex epilepsies is challenging, because evidence-based treatment guidelines are scarce, the experience of many physicians is limited, and interdisciplinary treatment of comorbidities is required. The pathomechanisms of rare epilepsies are, however, increasingly understood, which potentially fosters novel targeted therapies. The objectives of our survey were to obtain an overview of the clinical practice in European tertiary epilepsy centers treating patients with 5 arbitrarily selected rare epilepsies and to get an estimate of potentially available patients for future studies. Methods: Members of the European Reference Network for rare and complex epilepsies (EpiCARE) were invited to participate in a web-based survey on clinical practice of patients with Dravet syndrome, tuberous sclerosis complex (TSC), autoimmune encephalitis, and progressive myoclonic epilepsies including Unverricht Lundborg and Unverricht-like diseases. A consensus-based questionnaire was generated for each disease. Results: Twenty-six of 30 invited epilepsy centers participated. Cohorts were present in most responding centers for TSC (87%), Dravet syndrome (85%), and autoimmune encephalitis (71%). Patients with TSC and Dravet syndrome represented the largest cohorts in these centers. The antiseizure drug treatments were rather consistent across the centers especially with regard to Dravet syndrome, infantile spasms in TSC, and Unverricht Lundborg / Unverricht-like disease. Available, widely used targeted therapies included everolimus in TSC and immunosuppressive therapies in autoimmune encephalitis. Screening for comorbidities was routinely done, but specific treatment protocols were lacking in most centers. Significance: The survey summarizes the current clinical practice for selected rare epilepsies in tertiary European epilepsy centers and demonstrates consistency as well as heterogeneity in the treatment, underscoring the need for controlled trials and recommendations. The survey also provides estimates for potential participants of clinical trials recruited via EpiCARE, emphasizing the great potential of Reference Networks for future studies to evaluate new targeted therapies and to identify novel biomarkers. © 2020 The Authors. Epilepsia Open published by Wiley Periodicals LLC on behalf of International League Against Epilepsy
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy