SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leslie W.D.) srt2:(2015-2019)"

Sökning: WFRF:(Leslie W.D.) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Blain, H., et al. (författare)
  • A comprehensive fracture prevention strategy in older adults : the European union geriatric medicine society (EUGMS) statement
  • 2016
  • Ingår i: European Geriatric Medicine. - : Elsevier. - 1878-7649 .- 1878-7657. ; 7:6, s. 519-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Prevention of fragility fractures in older people has become a public health priority, although the most appropriate and cost-effective strategy remains unclear. In the present statement, the Interest group on falls and fracture prevention of the European union geriatric medicine society (EUGMS), in collaboration with the International association of gerontology and geriatrics for the European region (IAGG-ER), the European union of medical specialists (EUMS), the Fragility fracture network (FFN), the International osteoporosis foundation (IOF) - European society for clinical and economic aspects of osteoporosis and osteoarthritis (ECCEO), outlines its views on the main points in the current debate in relation to the primary and secondary prevention of falls, the diagnosis and treatment of bone fragility, and the place of combined falls and fracture liaison services for fracture prevention in older people.
  •  
3.
  • Ferrari, S. L., et al. (författare)
  • Diagnosis and management of bone fragility in diabetes : an emerging challenge
  • 2018
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 29:12, s. 2585-2596
  • Tidskriftsartikel (refereegranskat)abstract
    • Fragility fractures are increasingly recognized as a complication of both type 1 and type 2 diabetes, with fracture risk that increases with disease duration and poor glycemic control. Yet the identification and management of fracture risk in these patients remains challenging. This review explores the clinical characteristics of bone fragility in adults with diabetes and highlights recent studies that have evaluated bone mineral density (BMD), bone microstructure and material properties, biochemical markers, and fracture prediction algorithms (i.e., FRAX) in these patients. It further reviews the impact of diabetes drugs on bone as well as the efficacy of osteoporosis treatments in this population. We finally propose an algorithm for the identification and management of diabetic patients at increased fracture risk.
  •  
4.
  •  
5.
  • Kanis, J. A., et al. (författare)
  • FRAX and fracture prediction without bone mineral density
  • 2015
  • Ingår i: Climacteric. - : Informa UK Limited. - 1369-7137 .- 1473-0804. ; 18:Suppl. 2, s. 2-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The major application of FRAX in osteoporosis is to direct pharmacological interventions to those at high risk of fracture. Whereas the efficacy of osteoporosis treatment, with the possible exception of alendronate, is largely independent of baseline bone mineral density (BMD), it remains a widely held perception that osteoporosis therapies are only effective in the presence of low BMD. Thus, the use of FRAX in the absence of BMD to identify individuals requiring therapy remains the subject of some debate and is the focus of this review. The clinical risk factors used in FRAX have high evidence-based validity to identify a risk responsive to intervention. The selection of high-risk individuals with FRAX, without knowledge of BMD, preferentially selects for low BMD and thus identifies a risk that is responsive to pharmacological intervention. The prediction of fractures with the use of clinical risk factors alone in FRAX is comparable to the use of BMD alone to predict fractures and is suitable, therefore, in the many countries where facilities for BMD testing are sparse. In countries where access to BMD is greater, FRAX can be used without BMD in the majority of cases and BMD tests reserved for those close to a probability-based intervention threshold. Thus concerns surrounding the use of FRAX in clinical practice without information on BMD are largely misplaced. © 2015 International Menopause Society.
  •  
6.
  • Kanis, J. A., et al. (författare)
  • FRAX Update
  • 2017
  • Ingår i: Journal of Clinical Densitometry. - : Elsevier BV. - 1094-6950. ; 20:3, s. 360-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The fracture risk assessment tool, FRAX, was released in 2008 and provides country-specific algorithms for estimating individualized 10-year probability of hip and major osteoporotic fracture (hip, clinical spine, distal forearm, and proximal humerus). Since its release, models are now available for 63 countries, covering 79% of the world population. The website receives approximately 3 million visits annually. Following independent validation, FRAX has been incorporated into more than 80 guidelines worldwide. However, the application of FRAX in guidelines has been heterogeneous with the adoption of several different approaches to setting intervention thresholds. The relationship between FRAX and efficacy of intervention has been explored and is expected to influence treatment guidelines in the future. A more unified approach to setting intervention thresholds with FRAX is a research priority.
  •  
7.
  • Kanis, J. A., et al. (författare)
  • Overview of Fracture Prediction Tools
  • 2017
  • Ingår i: Journal of Clinical Densitometry. - : Elsevier BV. - 1094-6950. ; 20:3, s. 444-450
  • Tidskriftsartikel (refereegranskat)abstract
    • The characterization of risk factors for fracture that contribute significantly to fracture risk, over and above that provided by the bone mineral density, has stimulated the development of risk assessment tools. The more adequately evaluated tools, all available online, include the FRAX (R) tool, the Garvan fracture risk calculator and, in the United Kingdom only, QFracture (R). Differences in the input variables, output, and model construct give rise to marked differences in the computed risks from each calculator. Reasons for the differences include the derivation of fracture probability (FRAX) rather than incidence (Garvan and QFracture), limited calibration (Garvan), and inappropriate source information (QFracture). These differences need to be taken into account in the evaluation of assessment guidelines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy