SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lessa M.) srt2:(2023)"

Sökning: WFRF:(Lessa M.) > (2023)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal studies suggest that the apolipoprotein E epsilon 4 (APOE epsilon 4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOE epsilon 4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomog-raphy for amyloid-beta (A beta; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOE epsilon 4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for A beta and tau deposition. Furthermore, microglial acti-vation mediated the A beta-independent effects of APOE epsilon 4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOE epsilon 4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOE epsilon 4 genotype exerts A beta-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.
  •  
2.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 potentiates amyloid β effects on longitudinal tau pathology
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms by which the apolipoprotein E epsilon 4 (APOE epsilon 4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOE epsilon 4 carriership and amyloid-beta (A beta) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOE epsilon 4 carriership potentiates A beta effects on longitudinal tau accumulation over 2 years. The APOE epsilon 4-potentiated A beta effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217(+)) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOE epsilon 4 allele plays a key role in A beta downstream effects on the aggregation of phosphorylated tau in the living human brain.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1913-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. Methods In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (A beta 42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF A beta 42/p-tau ratio. Results All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF A beta 42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). Discussion Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. Highlights Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts.
  •  
4.
  • Bellaver, B., et al. (författare)
  • Blood-brain barrier integrity impacts the use of plasma amyloid-beta as a proxy of brain amyloid-beta pathology
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:9, s. 3815-3825
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION Amyloid-beta (A beta) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers.METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography A beta, p-tau, and albumin measures.RESULTS Plasma A beta(42/40) better identified CSF A beta(42/40) and A beta-PET positivity in individuals with high BBB permeability. An interaction between plasma A beta(42/40) and BBB permeability on CSF A beta(42/40) was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma A beta was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels.DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma A beta, but not p-tau, biomarkers in research and clinical settings.
  •  
5.
  • Tissot, C., et al. (författare)
  • The Association of Age-Related and Off-Target Retention with Longitudinal Quantification of 18F MK6240 Tau PET in Target Regions
  • 2023
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 2159-662X. ; 64:3, s. 452-459
  • Tidskriftsartikel (refereegranskat)abstract
    • 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F] MK6240) tau PET tracer quantifies the brain tau neurofibrillary tangle load in Alzheimer disease. The aims of our study were to test the stabil-ity of common reference region estimates in the cerebellum over time and across diagnoses and evaluate the effects of age-related and off -target retention on the longitudinal quantification of [18F]MK6240 in tar-get regions. Methods: We assessed reference, target, age-related, and off-target regions in 125 individuals across the aging and Alzhei-mer disease spectrum with longitudinal [18F]MK6240 SUVs and SUV ratios (SUVRs) (mean +/- SD, 2.25 +/- 0.40 y of follow-up). We obtained SUVR from meninges, exhibiting frequent off-target retention with [18F]MK6240. Additionally, we compared tracer uptake between 37 cognitively unimpaired young (CUY) (mean age, 23.41 +/- 3.33 y) and 27 cognitively unimpaired older (CU) adults (amyloid-P-negative and tau-negative, 58.50 +/- 9.01 y) to identify possible nonvisually apparent, age-related signal. Two-tailed t testing and Pearson correlation testing were used to determine the difference between groups and associa-tions between changes in region uptake, respectively. Results: Inferior cerebellar gray matter SUV did not differ on the basis of diagnosis and amyloid-P status, cross-sectionally and over time. [18F]MK6240 uptake significantly differed between CUY and CU adults in the puta-men or pallidum (affecting-75% of the region) and in the Braak II region (affecting-35%). Changes in meningeal and putamen or palli-dum SUVRs did not significantly differ from zero, nor did they vary across diagnostic groups. We did not observe significant correlations between longitudinal changes in age-related or meningeal off-target retention and changes in target regions, whereas changes in all target regions were strongly correlated. Conclusion: Inferior cerebellar gray matter was similar across diagnostic groups cross-sectionally and sta-ble over time and thus was deemed a suitable reference region for quantification. Despite not being visually perceptible, [18F]MK6240 has age-related retention in subcortical regions, at a much lower magnitude but topographically colocalized with significant off-target signal of the first-generation tau tracers. The lack of correlation between changes in age-related or meningeal and target retention suggests little influence of possible off-target signals on longitudinal tracer quantification. Nev-ertheless, the age-related retention in the Braak II region needs to be further investigated. Future postmortem studies should elucidate the source of the newly reported age-related [18F]MK6240 signal, and in vivo studies should further explore its impact on tracer quantification.
  •  
6.
  • Woo, M. S., et al. (författare)
  • 14-3-3 ζ/δ-reported early synaptic injury in Alzheimer's disease is independently mediated by sTREM2
  • 2023
  • Ingår i: Journal of Neuroinflammation. - 1742-2094. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears.Methods We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta (zeta/delta) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages.Results14-3-3 zeta/delta was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 zeta/delta correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss.ConclusionsOur results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.
  •  
7.
  • Bellaver, B., et al. (författare)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Nature Medicine. - 1078-8956. ; 29:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
8.
  • Lima, R. A. S., et al. (författare)
  • Association of the fibronectin type III domain-containing protein 5 rs1746661 single nucleotide polymorphism with reduced brain glucose metabolism in elderly humans
  • 2023
  • Ingår i: Brain Communications. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Lima-Filho et al. reported that cognitively unimpaired elders carrying the FNDC5 rs1746661(T) allele develop low brain glucose metabolism and increased amyloid deposition. These findings indicate that FNDC5 may contribute to regional glucose metabolism in the human brain. Fibronectin type III domain-containing protein 5 (FNDC5) and its derived hormone, irisin, have been associated with metabolic control in humans, with described FNDC5 single nucleotide polymorphisms being linked to obesity and metabolic syndrome. Decreased brain FNDC5/irisin has been reported in subjects with dementia due to Alzheimer's disease. Since impaired brain glucose metabolism develops in ageing and is prominent in Alzheimer's disease, here, we examined associations of a single nucleotide polymorphism in the FNDC5 gene (rs1746661) with brain glucose metabolism and amyloid-& beta; deposition in a cohort of 240 cognitively unimpaired and 485 cognitively impaired elderly individuals from the Alzheimer's Disease Neuroimaging Initiative. In cognitively unimpaired elderly individuals harbouring the FNDC5 rs1746661(T) allele, we observed a regional reduction in low glucose metabolism in memory-linked brain regions and increased brain amyloid-& beta; PET load. No differences in cognition or levels of cerebrospinal fluid amyloid-& beta;(42), phosphorylated tau and total tau were observed between FNDC5 rs1746661(T) allele carriers and non-carriers. Our results indicate that a genetic variant of FNDC5 is associated with low brain glucose metabolism in elderly individuals and suggest that FNDC5 may participate in the regulation of brain metabolism in brain regions vulnerable to Alzheimer's disease pathophysiology. Understanding the associations between genetic variants in metabolism-linked genes and metabolic brain signatures may contribute to elucidating genetic modulators of brain metabolism in humans.
  •  
9.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Plasma and cerebrospinal fluid glial fibrillary acidic protein levels in adults with Down syndrome: a longitudinal cohort study
  • 2023
  • Ingår i: eBioMedicine. - : Elsevier BV. - 2352-3964. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) isa marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. Methods We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universitat, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. Findings This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymp-tomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF A beta changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its con-centrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. Interpretation Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials.
  •  
10.
  • Ashton, Nicholas J., et al. (författare)
  • Alzheimer Disease Blood Biomarkers in Patients With Out-of-Hospital Cardiac Arrest
  • 2023
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 80:4, s. 388-396
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Blood phosphorylated tau (p-tau) and amyloid-13 peptides (A13) are promising peripheral biomarkers of Alzheimer disease (AD) pathology. However, their potential alterations due to alternative mechanisms, such as hypoxia in patients resuscitated from cardiac arrest, are not known. OBJECTIVE To evaluate whether the levels and trajectories of blood p-tau, A1342, and A1340 following cardiac arrest, in comparison with neural injury markers neurofilament light (NfL) and total tau (t-tau), can be used for neurological prognostication following cardiac arrest.DESIGN, SETTING, AND PARTICIPANTS This prospective clinical biobank study used data from the randomized Target Temperature Management After Out-of-Hospital Cardiac Arrest (TTM) trial. Unconscious patients with cardiac arrest of presumed cardiac origin were included between November 11, 2010, and January 10, 2013, from 29 international sites. Serum analysis for serum NfL and t-tau were performed between August 1 and August 23, 2017. Serum p-tau, A1342, and A1340 were analyzed between July 1 and July 15, 2021, and between May 13 and May 25, 2022. A total of 717 participants from the TTM cohort were examined: an initial discovery subset (n = 80) and a validation subset. Both subsets were evenly distributed for good and poor neurological outcome after cardiac arrest.EXPOSURES Serum p-tau, A1342, and A1340 concentrations using single molecule array technology. Serum levels of NfL and t-tau were included as comparators.MAIN OUTCOMES AND MEASURES Blood biomarker levels at 24 hours, 48 hours, and 72 hours after cardiac arrest. Poor neurologic outcome at 6-month follow-up, defined according to the cerebral performance category scale as category 3 (severe cerebral disability), 4 (coma), or 5 (brain death).RESULTS This study included 717 participants (137 [19.1%] female and 580 male [80.9%]; mean [SD] age, 63.9 [13.5] years) who experienced out-of-hospital cardiac arrest. Significantly elevated serum p-tau levels were observed at 24 hours, 48 hours, and 72 hours in cardiac arrest patients with poor neurological outcome. The magnitude and prognostication of the change was greater at 24 hours (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI, 0.95-0.97), which was similar to NfL (AUC, 0.94; 95% CI, 0.92-0.96). However, at later time points, p-tau levels decreased and were weakly associated with neurological outcome. In contrast, NfL and t-tau maintained high diagnostic accuracies, even 72 hours after cardiac arrest. Serum A1342 and A1340 concentrations increased over time in most patients but were only weakly associated with neurological outcome.CONCLUSIONS AND RELEVANCE In this case-control study, blood biomarkers indicative of AD pathology demonstrated different dynamics of change after cardiac arrest. The increase of p-tau at 24 hours after cardiac arrest suggests a rapid secretion from the interstitial fluid following hypoxic-ischemic brain injury rather than ongoing neuronal injury like NfL or t-tau. In contrast, delayed increases of A13 peptides after cardiac arrest indicate activation of amyloidogenic processing in response to ischemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy