SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lestinsky M.) srt2:(2015-2019)"

Sökning: WFRF:(Lestinsky M.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lestinsky, M., et al. (författare)
  • Physics book: CRYRING@ESR
  • 2016
  • Ingår i: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6401 .- 1951-6355. ; 225:5, s. 797-882
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm (Abrahamsson et al. 1993) and at the Test Storage Ring (TSR) at Heidelberg (Baumann et al. 1988). For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt (Franzke 1987) where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei (Xia et al. 2002).
  •  
2.
  • Lestinsky, M., et al. (författare)
  • CRYRING@ESR: present status and future research
  • 2015
  • Ingår i: Physica Scripta. - : IOP Publishing. - 1402-4896 .- 0031-8949. ; 2015:T166
  • Konferensbidrag (refereegranskat)abstract
    • The former storage ring CRYRING has been shipped from the Manne Siegbahn Laboratory in Stockholm to Darmstadt as a Swedish in-kind contribution to FAIR. At its new location downstream of ESR all ion species presently accessible in ESR can be transferred to CRYRING, in which ions with rigidities between 1.44 and 0.054 Tm can be stored. The original Swedish layout has been modified by reconfiguring the sequence of straight sections and by slightly increasing the circumference to ESR/2. Ions can be injected from ESR or from an independent 300 keV/u RFQ test injector. The instrumentation of the ring includes an RF drift tube system for acceleration and deceleration (1 T s(-1), with a possibility for an upgrade to 7 T s(-1)), electron cooling, a free experimental section, and both fast and slow extraction of ions. We report on the present progress of this project, give a prospective timeline, and summarize the new research which will be enabled by this project. First beam for commissioning of the storage ring is expected for 2015, final bakeout to restore ultrahigh vacuum conditions in 2016 and ion beams injected through ESR in similar to 2017.
  •  
3.
  • Gorda, O., et al. (författare)
  • Ion-optical design of CRYRING@ESR
  • 2015
  • Ingår i: Physica Scripta. - 0031-8949 .- 1402-4896. ; T166
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2012 the CRYRING storage ring was delivered from Stockholm to Darmstadt as a part of the Swedish in-kind contribution to the FAIR project. The ring lattice has been slightly changed for optimal injection and to provide additional space for experiment equipment. For the injection from the experimental storage ring (ESR), a new transfer line has been designed. The local injector line has been significantly modified compared to the previous one in Stockholm taking into account the geometry of the existing GSI building. In this paper we present the ion-optical properties of CRYRING@ESR after the described modifications. Single-turn injection from the ESR and multi-turn injection from the local injector are discussed. Ion-optical calculations of fast and slow extraction from CRYRING are also presented. The closed orbit correction scheme is considered taking into account the future arrangement of the beam position monitors and correction magnets. Based on the results of the calculations the requirements for the magnet alignment are finally discussed.
  •  
4.
  • Gumberidze, A., et al. (författare)
  • Electron- and proton-impact excitation of heliumlike uranium in relativistic collisions
  • 2019
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - 2469-9926 .- 2469-9934. ; 99:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the K-shell excitation of He-like uranium (U90+) in relativistic collisions with hydrogen and argon atoms. Performing measurements with different targets, as well as with different collision energies, enabled us to explore the proton- (nucleus-) impact excitation as well as the electron-impact excitation process for the heaviest He-like ion. The large fine-structure splitting in uranium allowed us to partially resolve excitation into different L-shell levels. State-of-the-art relativistic calculations which include excitation mechanisms due to the interaction with both protons (nucleus) and electrons are in good agreement with the experimental findings. Moreover, our experimental data clearly demonstrate the importance of including the generalized Breit interaction in the treatment of the electron-impact excitation process.
  •  
5.
  • Lestinsky, M., et al. (författare)
  • CRYRING@ESR: present status and future research
  • 2015
  • Ingår i: Physica Scripta. - 0031-8949 .- 1402-4896. ; T166
  • Tidskriftsartikel (refereegranskat)abstract
    • The former storage ring CRYRING has been shipped from the Manne Siegbahn Laboratory in Stockholm to Darmstadt as a Swedish in-kind contribution to FAIR. At its new location downstream of ESR all ion species presently accessible in ESR can be transferred to CRYRING, in which ions with rigidities between 1.44 and 0.054 Tm can be stored. The original Swedish layout has been modified by reconfiguring the sequence of straight sections and by slightly increasing the circumference to ESR/2. Ions can be injected from ESR or from an independent 300 keV/u RFQ test injector. The instrumentation of the ring includes an RF drift tube system for acceleration and deceleration (1 T s(-1), with a possibility for an upgrade to 7 T s(-1)), electron cooling, a free experimental section, and both fast and slow extraction of ions. We report on the present progress of this project, give a prospective timeline, and summarize the new research which will be enabled by this project. First beam for commissioning of the storage ring is expected for 2015, final bakeout to restore ultrahigh vacuum conditions in 2016 and ion beams injected through ESR in similar to 2017.
  •  
6.
  • Stoehlker, Th., et al. (författare)
  • APPA at FAIR : From fundamental to applied research
  • 2015
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 235, s. 680-685
  • Tidskriftsartikel (refereegranskat)abstract
    • FAIR with its intense beams of ions and antiprotons provides outstanding and worldwide unique experimental conditions for extreme matter research in atomic and plasma physics and for application oriented research in biophysics, medical physics and materials science. The associated research programs comprise interaction of matter with highest electromagnetic fields, properties of plasmas and of solid matter under extreme pressure, density, and temperature conditions, simulation of galactic cosmic radiation, research in nanoscience and charged particle radiotherapy. A broad variety of APPA-dedicated facilities including experimental stations, storage rings, and traps, equipped with most sophisticated instrumentation will allow the APPA community to tackle new challenges. The worldwide most intense source of slow antiprotons will expand the scope of APPA related research to the exciting field of antimatter.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy