SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Letcher Robert J) srt2:(2020-2024)"

Sökning: WFRF:(Letcher Robert J) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fernandes, Alwyn R., et al. (författare)
  • Recommended terms and abbreviations for polychlorinated alkanes (PCAs) as the predominant component of chlorinated paraffins (CPs)
  • 2023
  • Ingår i: TrAC. Trends in analytical chemistry. - : Elsevier. - 0165-9936 .- 1879-3142. ; 169
  • Forskningsöversikt (refereegranskat)abstract
    • Despite several decades of study, ambiguities persist in terms used to express environmental and biotic occurrences of polychlorinated alkanes (PCAs), the main ingredient of chlorinated paraffins (CPs). This can lead to misinterpretation of data between analytical chemists, toxicologists, risk assessors/managers and regulators. The terms recommended here to harmonise reporting and reduce ambiguity use the conventional definition of PCAs - linear chlorinated alkanes (typically, C≥10) with one chlorine per carbon, although some evidence of multiple chlorination exists. Other recommendations include.● reporting the “Sum of measured PCAs” because “Total PCAs” is currently unquantifiable.●reporting individual chain lengths, e.g., ΣPCAs-C11, ΣPCAs-C13, allows easier comparability and allows toxicology and risk assessment to consider different PCA combinations.● maintain studies on individual PCAs in order to better characterise chemical, environmental and health risk behaviour.The terms could be extended in future to assimilate new findings on individual PCAs, multiple chlorination and chirality.
  •  
2.
  • Poorter, Lourens, et al. (författare)
  • Functional recovery of secondary tropical forests
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 118:49, s. e2003405118-e2003405118
  • Tidskriftsartikel (refereegranskat)abstract
    • One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.
  •  
3.
  •  
4.
  • Smythe, Tristan A., et al. (författare)
  • Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna : A review
  • 2022
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 161
  • Forskningsöversikt (refereegranskat)abstract
    • Over the past few decades, production trends of the flame retardant (FR) industry, and specifically for brominated FRs (BFRs), is for the replacement of banned and regulated compounds with more highly brominated, higher molecular weight compounds including oligomeric and polymeric compounds. Chemical, biological, and environmental stability of BFRs has received some attention over the years but knowledge is currently lacking in the transformation potential and metabolism of replacement emerging or novel BFRs (E/NBFRs). For articles published since 2015, a systematic search strategy reviewed the existing literature on the direct (e.g., in vitro or in vivo) non-human BFR metabolism in fauna (animals). Of the 51 papers reviewed, and of the 75 known environmental BFRs, PBDEs were by far the most widely studied, followed by HBCDDs and TBBPA. Experimental protocols between studies showed large disparities in exposure or incubation times, age, sex, depuration periods, and of the absence of active controls used in in vitro experiments. Species selection emphasized non-standard test animals and/or field-collected animals making comparisons difficult. For in vitro studies, confounding variables were generally not taken into consideration (e.g., season and time of day of collection, pollution point-sources or human settlements). As of 2021 there remains essentially no information on the fate and metabolic pathways or kinetics for 30 of the 75 environmentally relevant E/BFRs. Regardless, there are clear species-specific and BFRspecific differences in metabolism and metabolite formation (e.g. BDE congeners and HBCDD isomers). Future in vitro and in vivo metabolism/biotransformation research on E/NBFRs is required to better understand their bioaccumulation and fate in exposed organisms. Also, studies should be conducted on well characterized lab (e. g., laboratory rodents, zebrafish) and commonly collected wildlife species used as captive models (crucian carp, Japanese quail, zebra finches and polar bears).
  •  
5.
  • Vorkamp, Katrin, et al. (författare)
  • Influences of climate change on long-term time series of persistent organic pollutants (POPs) in Arctic and Antarctic biota
  • 2022
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 24:10, s. 1643-1660
  • Forskningsöversikt (refereegranskat)abstract
    • Time series of contaminants in the Arctic are an important instrument to detect emerging issues and to monitor the effectiveness of chemicals regulation, based on the assumption of a direct reflection of changes in primary emissions. Climate change has the potential to influence these time trends, through direct physical and chemical processes and/or changes in ecosystems. This study was part of an assessment of the Arctic Monitoring and Assessment Programme (AMAP), analysing potential links between changes in climate-related physical and biological variables and time trends of persistent organic pollutants (POPs) in Arctic biota, with some additional information from the Antarctic. Several correlative relationships were identified between POP temporal trends in freshwater and marine biota and physical climate parameters such as oscillation indices, sea-ice coverage, temperature and precipitation, although the mechanisms behind these observations remain poorly understood. Biological data indicate changes in the diet and trophic level of some species, especially seabirds and polar bears, with consequences for their POP exposure. Studies from the Antarctic highlight increased POP availability after iceberg calving. Including physical and/or biological parameters in the POP time trend analysis has led to small deviations in some declining trends, but did generally not change the overall direction of the trend. In addition, regional and temporary perturbations occurred. Effects on POP time trends appear to have been more pronounced in recent years and to show time lags, suggesting that climate-related effects on the long time series might be gaining importance.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy