SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leygraf C.) "

Sökning: WFRF:(Leygraf C.)

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Heijerick, D. G., et al. (författare)
  • Bioavailability of zinc in runoff water from roofing materials
  • 2002
  • Ingår i: Chemosphere. - 0045-6535 .- 1879-1298. ; 47:10, s. 1073-1080
  • Tidskriftsartikel (refereegranskat)abstract
    • Corrosion and runoff from zinc-coated materials and outdoor structures is an important source for the dispersion of zinc in the environment. Being part of a large inter-disciplinary research project, this study presents the bioavailability of zinc in runoff water immediately after release from the surface of 15 different commercially available zinc-based materials exposed to the urban environment of Stockholm, Sweden. Runoff water was analysed chemically and evaluated for its possible environmental impact, using both a biosensor test with the bacteria Alcaligenes eutrophus (Biomet(R)) and the conventional 72 h growth inhibition test with the green alga Raphidocelis subcapitata. Chemical speciation modelling revealed that most zinc (94.3-99.9%) was present as the free Zn ion, the most bioavailable speciation form. These findings were confirmed by the results of the biosensor test (Biomet(R)) which indicated that all zinc was indeed bioavailable. Analysis of the ecotoxicity data also suggested that the observed toxic effects were due to the presence of Zn2+ ions. Finally, regression analysis showed that, for this type of runoff samples, the rapid screening biosensor was capable of predicting (a) the total amount of zinc present in the runoff samples (R-2 of 0.93-0.98; p < 0.05) and (b) the observed 72 h-EbC(50)s (R-2 of 0.69-0.97; p < 0.05).
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bjorkbacka, Asa, et al. (författare)
  • Role of the Oxide Layer in Radiation-Induced Corrosion of Copper in Anoxic Water
  • 2016
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:21, s. 11450-11455
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of a pregrown copper oxide layer on radiation-induced corrosion of polished copper in pure anoxic water has been explored. The resulting amount of copper oxide formed during corrosion was measured with cathodic reduction, and the concentration of dissolved copper in solution was measured with inductively coupled plasma atomic emission spectroscopy. The identity of corrosion products and their topography was determined with Raman spectroscopy and scanning electron microscopy, respectively. Nonirradiated reference samples were analyzed for comparison. The results show that radiation-induced corrosion of copper in anoxic water is significantly more effective on preoxidized copper compared to polished copper. The total amount of oxidized copper exceeds the amount expected solely from radiation chemistry of water by more than 3 orders of magnitude. To explain this discrepancy a mechanism is suggested where the hydroxyl radical (HO center dot) is the main radiolytic oxidative species driving the corrosion process. If the thermodynamic driving force would be large enough (such as for the hydroxyl radical or its precursor, H2O+), the oxide layer could conduct electrons from the metal to the hydroxyl radicals formed at oxide surfaces. The formation of an oxide layer will then result in an increased reactive surface area partly accounting for the observed discrepancy.
  •  
6.
  • Björkbacka, Åsa, et al. (författare)
  • Radiation Induced Corrosion of Copper in Humid Air and Argon Atmospheres
  • 2017
  • Ingår i: Journal of the Electrochemical Society. - : Electrochemical Society. - 0013-4651 .- 1945-7111. ; 164:4, s. C201-C206
  • Tidskriftsartikel (refereegranskat)abstract
    • Corrosion of copper is a key-issue in the safety assessment of deep geological repositories for spent nuclear fuel utilizing copper coated canisters to isolate the spent nuclear fuel from the surrounding environment. Of particular interest is the radiation induced corrosion attributed to the inherent radioactivity of the spent nuclear fuel. In this work we have studied the radiation induced corrosion of copper in humid air and argon atmospheres. Polished copper cubes were gamma irradiated in the environments mentioned above at ambient temperature. Reference samples, not irradiated but otherwise treated under the exact same conditions as the irradiated samples, were used throughout the study. The oxide layers formed during radiation exposure were studied using cathodic reduction, infrared reflection/absorption spectroscopy, and the surfaces were examined using scanning electron microscopy. When possible, the concentration of copper in solution was measured using inductively coupled plasma atomic emission spectroscopy. The experimental results clearly show that radiation induced corrosion of copper in humid air as well as in humid argon is significantly more extensive than the corresponding process in anaerobic water. This is well in line with the recently proposed mechanism for radiation-induced corrosion of copper in anaerobic water. The very similar behavior of copper irradiated in humid air and in humid argon implies that the radiolytically formed HNO3 in the case of humid air has negligible impact on the radiation-induced corrosion compared to the radiolytically formed hydroxyl radical.
  •  
7.
  • Chang, Tingru, et al. (författare)
  • High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:41, s. 49402-49413
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms of bacterial contact killing induced by Cu surfaces were explored through high-resolution studies based on combinations of the focused ion beam (FIB), scanning transmission electron microscopy (STEM), high-resolution TEM, and nanoscale Fourier transform infrared spectroscopy (nano-FTIR) microscopy of individual bacterial cells of Gram-positive Bacillus subtilis in direct contact with Cu metal and Cu5Zn5Al1Sn surfaces after high-touch corrosion conditions. This approach permitted subcellular information to be extracted from the bioinorganic interface between a single bacterium and Cu/Cu5Zn5Al1Sn surfaces after complete contact killing. Early stages of interaction between individual bacteria and the metal/alloy surfaces include cell leakage of extracellular polymeric substances (EPSs) from the bacterium and changes in the metal/alloy surface composition upon adherence of bacteria. Three key observations responsible for Cu-induced contact killing include cell membrane damage, formation of nanosized copper-containing particles within the bacteria cell, and intracellular copper redox reactions. Direct evidence of cell membrane damage was observed upon contact with both Cu metal and Cu5Zn5Al1Sn surfaces. Cell membrane damage permits copper to enter into the cell interior through two possible routes, as small fragmentized Cu2O particles from the corrosion product layer and/or as released copper ions. This results in the presence of intracellular copper oxide nanoparticles inside the cell. The nanosized particles consist primarily of CuO with smaller amounts of Cu2O. The existence of two oxidation states of copper suggests that intracellular redox reactions play an important role. The nanoparticle formation can be regarded as a detoxification process of copper, which immobilizes copper ions via transformation processes within the bacteria into poorly soluble or even insoluble nanosized Cu structures. Similarly, the formation of primarily Cu(II) oxide nanoparticles could be a possible way for the bacteria to deactivate the toxic effects induced by copper ions via conversion of Cu(I) to Cu(II).
  •  
8.
  • Femenia, M., et al. (författare)
  • Scanning Kelvin probe force microscopy and magnetic force microscopy for characterization of duplex stainless steels
  • 2003
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 150:6, s. B274-B281
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the Volta potential distribution over the surface of duplex stainless steels (DSSs) has been mapped for the first time with submicrometer resolution by scanning Kelvin probe force microscopy (SKPFM). The different magnetic properties of ferrite and austenite enable the utilization of magnetic force microscopy (MFM) for visualizing their surface distribution without the need of surface etching. The combined MFM and SKPFM mapping of the same area makes it possible to associate the variation in the Volta potential to the phase distribution and phase boundaries. The difference in potential between the two phases is measurable and significant. Generally, the ferrite phase was associated to regions of lower potential, and the austenite phase to regions of more noble potential. This can be regarded as direct evidence of galvanic interactions between the two phases. The phase boundary regions often exhibited a lower potential in the ferrite phase, indicating a higher tendency to corrosion. The high lateral resolution of SKPFM provides the possibility of comparing these results with those obtained from other localized techniques, a necessary step for a deeper understanding of the local corrosion processes in DSSs.
  •  
9.
  • Forslund, Mattias, et al. (författare)
  • Micro-galvanic corrosion effects on patterned copper-zinc samples during exposure in humidified air containing formic acid
  • 2013
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 0013-4651 .- 1945-7111. ; 160:9, s. C423-C431
  • Tidskriftsartikel (refereegranskat)abstract
    • Corrosion in indoor atmospheric environments is often triggered by carboxylic acids, especially at higher relative humidity. Microgalvanic effects can lead to severe corrosion, particularly important in miniature devices with small-sized metallic components. To elucidate the mechanism of micro-galvanic corrosion effects, well-defined zinc-copper patterned samples were investigated during exposure to 100 ppb formic acid (HCOOH) and 80% relative humidity at 20°C. The corrosion effects were monitored quantitatively with in situ infrared absorption spectroscopy, and the corrosion products characterized with scanning electron microscopy, confocal Raman microscopy, and atomic force microscopy. The nature of corrosion on zinc on the patterned samples was compared with that on pure zinc and turned out to result, not only in several times higher corrosion kinetics, but also in different corrosion products with respect to distribution, morphology, and composition. Local electrochemical and chemical gradients across the copper-zinc borders resulted in characteristic hemispherically shaped corrosion products at the zinc-copper junction, and in the formation of zinc formate dihydrate (Zn(HCOO)2 · 2H 2O) and crystalline zinc oxide (ZnO), phases not identified on pure zinc. In all, the micro-galvanic effects on the patterned samples resulted in accelerated corrosion kinetics and in structurally more developed corrosion products.
  •  
10.
  • Göthelid, Mats, et al. (författare)
  • Hexane selenol dissociation on Cu : The protective role of oxide and water
  • 2017
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 423, s. 716-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexane selenol (CH3(CH2)5SeH) was adsorbed from gas phase in ultra-high vacuum on polycrystalline Cu and studied with synchrotron radiation based photoelectron spectroscopy (PES) and Near edge X-ray absorption fine structure spectroscopy (NEXAFS). Adsorption was done on a bare copper surface at room temperature (RT), on a thin oxide on Cu at room temperature, and on a thin layer of water on Cu at 140 K.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy