SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Muyang) srt2:(2018)"

Sökning: WFRF:(Li Muyang) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhalla, Aditya, et al. (författare)
  • Engineered Lignin in Poplar Biomass Facilitates Cu-Catalyzed Alkaline-Oxidative
  • 2018
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 6:3, s. 2932-2941
  • Tidskriftsartikel (refereegranskat)abstract
    • Both untransformed poplar and genetically modified “zip-lignin” poplar, in which additional ester bonds were introduced into the lignin backbone, were subjected to mild alkaline and copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment. Our hypothesis was that the lignin in zip-lignin poplar would be removed more easily than lignin in untransformed poplar during this alkaline pretreatment, resulting in higher sugar yields following enzymatic hydrolysis. We observed improved glucose and xylose hydrolysis yields for zip-lignin poplar compared to untransformed poplar following both alkaline-only pretreatment (56% glucose yield for untransformed poplar compared to 67% for zip-lignin poplar) and Cu-AHP pretreatment (77% glucose yield for untransformed poplar compared to 85% for zip-lignin poplar). Compositional analysis, glycome profiling, and microscopy all supported the notion that the ester linkages increase delignification and improve sugar yields. Essentially no differences were noted in the molecular weight distributions of solubilized lignins between the zip-lignin poplar and the control line. Significantly, when zip-lignin poplar was utilized as the feedstock, hydrogen peroxide, catalyst, and enzyme loadings could all be substantially reduced while maintaining high sugar yields.
  •  
2.
  • Li, Muyang, et al. (författare)
  • Physical fractionation of sweet sorghum and forage/energy sorghum for optimal processing in a biorefinery
  • 2018
  • Ingår i: Industrial crops and products (Print). - : Elsevier. - 0926-6690 .- 1872-633X. ; 124, s. 607-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Sorghum offers enormous potential as a feedstock for the production of fuels and chemicals from both water-extractable sugars and the cell wall biopolymers, while its within-plant structural and compositional heterogeneity may allow for physical fractionations to tailor feedstock properties to a biorefining process. In this study, the stem internodes of two sorghum (Sorghum bicolor L. Moench) genotypes, a sweet sorghum (‘Della’) and a forage/energy sorghum (‘TX08001’), were first subjected to fractionation by manual classification by stem anatomy and internode proximity to the ground to yield 18 fractions. These fractions exhibited substantial differences in cell wall morphology, composition, and recalcitrance to mild alkaline pretreatment and enzymatic hydrolysis. While the sweet sorghum cultivar held nearly 70% more water-extractable sugar (sucrose, glucose, fructose, starch) in the stems than the forage/energy sorghum hybrid, both cultivars exhibited comparable diversity of composition and these compositions were remarkably similar in similar tissues and stem regions between the two cultivars. The fractions isolated from the pith parenchyma were the least recalcitrant to mild alkaline pretreatment and enzymatic hydrolysis and contained less lignin than fractions isolated from the epidermis, outer and inner rind, and internal vascular bundles. The pith samples isolated from the lowest region of the stem from both cultivars exhibited near-theoretical sugar hydrolysis yields when no pretreatment was employed and exhibited the lowest lignin contents of any of the fractions. Next, a physical fractionation approach approximating a commercial “de-pithing” process utilizing wet disintegration and sieving was applied to the forage/energy sorghum. A pith-rich fraction representing approximately 20% of the extractives-free mass of the stem could be isolated with this approach and, relative to the other fractions, was low in lignin, high in ash, highly hygroscopic, and showed an improved response to mild alkaline pretreatment and enzymatic hydrolysis at low enzyme loadings. Overall, these results demonstrate how heterogeneity within sorghum stems can be exploited using physical fractionation approaches to yield fractions enriched in desired properties that may allow for more streamlined processing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy