SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Xiaowei 1986) srt2:(2022)"

Sökning: WFRF:(Li Xiaowei 1986) > (2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Xin, 1980, et al. (författare)
  • Dataset for suppressors of amyloid-beta toxicity and their functions in recombinant protein production in yeast
  • 2022
  • Ingår i: Data in Brief. - : Elsevier BV. - 2352-3409. ; 42
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of recombinant proteins at high levels often induces stress-related phenotypes by protein misfolding or aggregation. These are similar to those of the yeast Alzheimer's disease (AD) model in which amyloid-beta peptides (A beta 42) were accumulated [1,2] . We have previously identified suppressors of A beta 42 cytotoxicity via the genome-wide synthetic genetic array (SGA) [3] and here we use them as metabolic engineering targets to evaluate their potentiality on recombinant protein production in yeast Saccharomyces cerevisiae. In order to investigate the mechanisms linking the genetic modifications to the improved recombinant protein production, we perform systems biology approaches (transcriptomics and proteomics) on the resulting strain and intermediate strains. The RNAseq data are preprocessed by the nf-core/RNAseq pipeline and analyzed using the Platform for Integrative Analysis of Omics (PIANO) package [4] . The quantitative proteome is analyzed on an Orbitrap Fusion Lumos mass spectrometer interfaced with an Easy-nLC1200 liquid chromatography (LC) system. LC-MS data files are processed by Proteome Discoverer version 2.4 with Mascot 2.5.1 as a database search engine. The original data presented in this work can be found in the research paper titled "Suppressors of Amyloid-beta Toxicity Improve Recombinant Protein Produc-tion in yeast by Reducing Oxidative Stress and Tuning Cellu-lar Metabolism", by Chen et al. [5] . (C) 2022 The Author(s). Published by Elsevier Inc.
  •  
2.
  • Chen, Xin, 1980, et al. (författare)
  • Suppressors of amyloid-β toxicity improve recombinant protein production in yeast by reducing oxidative stress and tuning cellular metabolism
  • 2022
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 72, s. 311-324
  • Tidskriftsartikel (refereegranskat)abstract
    • High-level production of recombinant proteins in industrial microorganisms is often limited by the formation of misfolded proteins or protein aggregates, which consequently induce cellular stress responses. We hypothesized that in a yeast Alzheimer's disease (AD) model overexpression of amyloid-β peptides (Aβ42), one of the main peptides relevant for AD pathologies, induces similar phenotypes of cellular stress. Using this humanized AD model, we previously identified suppressors of Aβ42 cytotoxicity. Here we hypothesize that these suppressors could be used as metabolic engineering targets to alleviate cellular stress and improve recombinant protein production in the yeast Saccharomyces cerevisiae. Forty-six candidate genes were individually deleted and twenty were individually overexpressed. The positive targets that increased recombinant α-amylase production were further combined leading to an 18.7-fold increased recombinant protein production. These target genes are involved in multiple cellular networks including RNA processing, transcription, ER-mitochondrial complex, and protein unfolding. By using transcriptomics and proteomics analyses, combined with reverse metabolic engineering, we showed that reduced oxidative stress, increased membrane lipid biosynthesis and repressed arginine and sulfur amino acid biosynthesis are significant pathways for increased recombinant protein production. Our findings provide new insights towards developing synthetic yeast cell factories for biosynthesis of valuable proteins.
  •  
3.
  • Wang, Yanyan, 1989, et al. (författare)
  • CRISPR/Cas9-mediated point mutations improve alpha-amylase secretion in Saccharomyces cerevisiae
  • 2022
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid expansion of the application of pharmaceutical proteins and industrial enzymes requires robust microbial workhorses for high protein production. The budding yeast Saccharomyces cerevisiae is an attractive cell factory due to its ability to perform eukaryotic post-translational modifications and to secrete proteins. Many strategies have been used to engineer yeast platform strains for higher protein secretion capacity. Herein, we investigated a line of strains that have previously been selected after UV random mutagenesis for improved alpha-amylase secretion. A total of 42 amino acid altering point mutations identified in this strain line were reintroduced into the parental strain AAC to study their individual effects on protein secretion. These point mutations included missense mutations (amino acid substitution), nonsense mutations (stop codon generation), and frameshift mutations. For comparison, single gene deletions for the corresponding target genes were also performed in this study. A total of 11 point mutations and seven gene deletions were found to effectively improve alpha-amylase secretion. These targets were involved in several bioprocesses, including cellular stresses, protein degradation, transportation, mRNA processing and export, DNA replication, and repair, which indicates that the improved protein secretion capacity in the evolved strains is the result of the interaction of multiple intracellular processes. Our findings will contribute to the construction of novel cell factories for recombinant protein secretion. Systematic characterization of point mutations from evolved strains using CRISPR/Cas9 technology revealed a set of gene alterations that improved recombinant protein secretion in Saccharomyces cerevisiae.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy