SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liberman Michael) srt2:(2015-2019)"

Sökning: WFRF:(Liberman Michael) > (2015-2019)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dumanov, E. V., et al. (författare)
  • Interaction of two-dimensional magnetoexcitons
  • 2017
  • Ingår i: Physica. E, Low-Dimensional systems and nanostructures. - : Elsevier BV. - 1386-9477 .- 1873-1759. ; 88, s. 77-86
  • Tidskriftsartikel (refereegranskat)abstract
    • We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector (k) over right arrow (parallel to) = 0, taking into account the influence of the excited Landau levels (ELLS) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field., It is shown that the account of the ELLS gives rise to the repulsion between the spinless magnetoexcitons with (k) over right arrow (parallel to) = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g(0) similar to 1/B). In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 21) magnetoexcitons with (k) over right arrow (parallel to) = 0. The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g(0) - 1/root B.
  •  
2.
  • Elperin, T., et al. (författare)
  • Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere
  • 2015
  • Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1539-3755 .- 1550-2376. ; 92:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Condensation of water vapor on active cloud condensation nuclei produces micron-size water droplets. To form rain, they must grow rapidly into at least 50-to 100-mu m droplets. Observations show that this process takes only 15-20 min. The unexplained physical mechanism of such fast growth is crucial for understanding and modeling of rain and known as condensation-coalescence bottleneck in rain formation. We show that the recently discovered phenomenon of the tangling clustering instability of small droplets in temperature-stratified turbulence [Phys. Fluids 25, 085104 (2013)] results in the formation of droplet clusters with drastically increased droplet number densities. The mechanism of the tangling clustering instability is much more effective than the previously considered by us the inertial clustering instability caused by the centrifugal effect of turbulent vortices. This is the reason of strong enhancement of the collision-coalescence rate inside the clusters. The mean-field theory of the droplet growth developed in this study can be useful for explanation of the observed fast growth of cloud droplets in warm clouds from the initial 1-mu m-size droplets to 40- to 50-mu m-size dropletswithin 15-20 min.
  •  
3.
  • Elperin, T., et al. (författare)
  • Turbulent diffusion of chemically reacting flows : Theory and numerical simulations
  • 2017
  • Ingår i: Physical review. E. - : American Physical Society. - 2470-0045 .- 2470-0053. ; 96:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damkohler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
  •  
4.
  • Elperin, T., et al. (författare)
  • Turbulent transport of chemically reacting gaseous admixtures
  • 2015
  • Ingår i: Proceedings - 15th European Turbulence Conference, ETC 2015. - : TU Delft.
  • Konferensbidrag (refereegranskat)abstract
    • We study turbulent diffusion of chemically reacting gaseous admixtures in a developed turbulence. In our previous study [Phys. Rev. Lett. 80, 69 (1998)] using a path-integral approach for a delta-correlated in time random velocity field, we demonstrated a strong modification of turbulent transport in fluid flows with chemical reactions or phase transitions. In the present study we use the spectral tau approximation, that is valid for large Reynolds and Peclet numbers, and show that turbulent diffusion of the reacting species can be strongly depleted by a large factor that is the ratio of turbulent and chemical times (turbulent Damköhler number). We have demonstrated that the derived theoretical dependence of turbulent diffusion coefficient versus the turbulent Damköhler number is in a good agreement with that obtained previously in the numerical modelling of a reactive front propagating in a turbulent flow and described by the Kolmogorov-Petrovskii-Piskunov-Fisher equation. We have found that turbulent cross-effects, e.g., turbulent mutual diffusion of gaseous admixtures and turbulent Dufour-effect of the chemically reacting gaseous admixtures, are less sensitive to the values of stoichiometric coefficients. The mechanisms of the turbulent cross-effects are different from the molecular cross effects known in irreversible thermodynamics. In a fully developed turbulence and at large Peclet numbers the turbulent cross-effects are much larger than the molecular ones. The obtained results are applicable also to heterogeneous phase transitions.
  •  
5.
  • Liberman, Michael A., et al. (författare)
  • Multipoint radiation induced ignition of dust explosions : turbulent clustering of particles and increased transparency
  • 2018
  • Ingår i: Combustion theory and modelling. - : Informa UK Limited. - 1364-7830 .- 1741-3559. ; 22:6, s. 1084-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the causes and mechanisms of large explosions, especially dust explosions, is essential for minimising devastating hazards in many industrial processes. It is known that unconfined dust explosions begin as primary (turbulent) deflagrations followed by a devastating secondary explosion. The secondary explosion may propagate with a speed of up to 1000 m/s producing overpressures of over 8-10 atm, which is comparable with overpressures produced in detonation. Since detonation is the only established theory that allows rapid burning producing a high pressure that can be sustained in open areas, the generally accepted view was that the mechanism explaining the high rate of combustion in dust explosions is deflagration-to-detonation transition. In the present work we propose a theoretical substantiation of an alternative mechanism explaining the origin of the secondary explosion producing high speeds of combustion and high overpressures in unconfined dust explosions. We show that the clustering of dust particles in a turbulent flow ahead of the advancing flame front gives rise to a significant increase of the thermal radiation absorption length. This effect ensures that clusters of dust particles are exposed to and heated by radiation from hot combustion products of dust explosions for a sufficiently long time to become multi-point ignition kernels in a large volume ahead of the advancing flame. The ignition times of a fuel-air mixture caused by radiatively heated clusters of particles is considerably reduced compared with the ignition time caused by an isolated particle. Radiation-induced multipoint ignitions of a large volume of fuel-air ahead of the primary flame efficiently increase the total flame area, giving rise to the secondary explosion, which results in the high rates of combustion and overpressures required to account for the observed level of overpressures and damage in unconfined dust explosions, such as for example the 2005 Buncefield explosion and several vapour cloud explosions of severity similar to that of the Buncefield incident.
  •  
6.
  • Liberman, Michael A., et al. (författare)
  • Radiation heat transfer in particle-laden gaseous flame : Flame acceleration and triggering detonation
  • 2015
  • Ingår i: Acta Astronautica. - : Elsevier BV. - 0094-5765 .- 1879-2030. ; 115, s. 82-93
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. The initiated combustion regime ignited in the preheat zone ahead of the flame depends on the radiation absorption length and on the steepness of the formed temperature gradient. Scenario of the detonation triggering via the temperature gradient mechanism formed due to the radiation preheating is plausible explanation of the transition to detonation in Supernovae Type la explosion. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved.
  •  
7.
  • Liberman, Michael, et al. (författare)
  • Influence of chemical kinetics on spontaneous waves and detonation initiation in highly reactive and low reactive mixtures
  • 2019
  • Ingår i: Combustion theory and modelling. - : Informa UK Limited. - 1364-7830 .- 1741-3559. ; 23:3, s. 467-495
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the mechanisms of explosions is important for minimising devastating hazards. Due to the complexity of real chemistry, a single-step reaction mechanism is usually used for theoretical and numerical studies. The purpose of this study is to look more deeply into the influence of chemistry on detonation initiated by a spontaneous wave. The results of high-resolution simulations performed for one-step models are compared with simulations for detailed chemical models for highly reactive and low reactive mixtures. The calculated induction times for H-2/air and for CH4/air are validated against experimental measurements for a wide range of temperatures and pressures. It is found that the requirements in terms of temperature and size of the hot spots, which can produce a spontaneous wave capable to initiate detonation, are quantitatively and qualitatively different for one-step models compared to detailed chemical models. The time and locations when the exothermic reaction affects the coupling between the pressure wave and spontaneous wave are considerably different for a one-step and detailed models. The temperature gradients capable to produce detonation and the corresponding size of hot spots are much shallower and, correspondingly, larger than those predicted using one-step models. The impact of the detailed chemical model is particularly pronounced for the methane-air mixture. In this case, not only the hot spot size is much greater than that predicted by a one-step model, but even at the elevated pressure, the initiation of detonation by a temperature gradient is possible only if the temperature outside the gradient is rather high, so that can ignite a thermal explosion. The obtained results suggest that the one-step models do not reproduce correctly the transient and ignition processes, so that interpretation of the simulations performed using a one-step model for understanding mechanisms of flame acceleration, DDT and the origin of explosions must be considered with great caution.
  •  
8.
  • Liberman, Michael, et al. (författare)
  • Mechanism of unconfined dust explosions : Turbulent clustering and radiation-induced ignition
  • 2017
  • Ingår i: Physical review. E. - : American Physical Society. - 2470-0045 .- 2470-0053. ; 95:5
  • Tidskriftsartikel (refereegranskat)abstract
    • It is known that unconfined dust explosions typically start off with a relatively weak primary flame followed by a severe secondary explosion. We show that clustering of dust particles in a temperature stratified turbulent flow ahead of the primary flame may give rise to a significant increase in the radiation penetration length. These particle clusters, even far ahead of the flame, are sufficiently exposed and heated by the radiation from the flame to become ignition kernels capable to ignite a large volume of fuel-air mixtures. This efficiently increases the total flame surface area and the effective combustion speed, defined as the rate of reactant consumption of a given volume. We show that this mechanism explains the high rate of combustion and overpressures required to account for the observed level of damage in unconfined dust explosions, e.g., at the 2005 Buncefield vapor-cloud explosion. The effect of the strong increase of radiation transparency due to turbulent clustering of particles goes beyond the state of the art of the application to dust explosions and has many implications in atmospheric physics and astrophysics.
  •  
9.
  • Moskalenko, S. A., et al. (författare)
  • Dispersion laws of the two-dimensional cavity magnetoexciton-polaritons
  • 2016
  • Ingår i: Journal of Nanophotonics. - : SPIE - International Society for Optical Engineering. - 1934-2608. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy spectrum of the two-dimensional cavity magnetoexciton-polaritons has been investigated previously, using exact solutions for the Landau quantization (LQ) of conduction electrons and heavy holes (hhs) provided by the Rashba method. Two lowest LQ levels for electrons and three lowest Landau levels for hhs lead to the construction of the six lowest magnetoexciton sates. They consist of two dipole-active, two quadrupole-active, and the two forbidden quantum transitions from the ground state of the crystal to the magnetoexciton states. The interaction of the four optical-active magnetoexciton states with the cavity-mode photons with a given circular polarization and with well-defined incidence direction leads to the creation of five magnetoexciton-polariton branches. The fifth-order dispersion equation is examined by using numerical calculations and the second-order dispersion equation is solved analytically, taking into account only one dipole-active magnetoexciton state in the point of the in-plane wave vector k→ ||=0. The effective polariton mass on the lower polariton branch, the Rabi frequency, and the corresponding Hopfield coefficients are determined in dependence on the magnetic-field strength, the Rashba spin-orbit coupling parameters, and the electron and hole g-factors.
  •  
10.
  • Moskalenko, S. A., et al. (författare)
  • Effects of Rashba spin-orbit coupling, Zeeman splitting and gyrotropy in two-dimensional cavity polaritons under the influence of the Landau quantization
  • 2015
  • Ingår i: European Physical Journal B. - : Springer. - 1434-6028 .- 1434-6036. ; 88:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the energy spectrum of the two-dimensional cavity polaritons under the influence of a strong magnetic and electric fields perpendicular to the surface of the GaAs-type quantum wells (QWs) with p-type valence band embedded into the resonators. As the first step in this direction the Landau quantization (LQ) of the electrons and heavy-holes (hh) was investigated taking into account the Rashba spin-orbit coupling (RSOC) with third-order chirality terms for hh and with nonparabolicity terms in their dispersion low including as well the Zeeman splitting (ZS) effects. The nonparabolicity term is proportional to the strength of the electric field and was introduced to avoid the collapse of the semiconductor energy gap under the influence of the third order chirality terms. The exact solutions for the eigenfunctions and eigenenergies were obtained using the Rashba method [E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)]]. On the second step we derive in the second quantization representation the Hamiltonians describing the Coulomb electron-electron and the electron-radiation interactions. This allow us to determine the magnetoexciton energy branches and to deduce the Hamiltonian of the magnetoexciton-photon interaction. On the third step the fifth order dispersion equation describing the energy spectrum of the cavity magnetoexciton-polariton is investigated. It takes into account the interaction of the cavity photons with two dipole-active and with two quadrupole-active 2D magnetoexciton energy branches. The cavity photons have the circular polarizations σk ± oriented along their wave vectors k, which has the quantized longitudinal component kz = ± π/Lc, where Lc is the resonator length and another small transverse component k∥ oriented in the plane of the QW. The 2D magnetoexcitons are characterized by the in-plane wave vectors k∥ and by circular polarizations σM arising in the p-type valence band with magnetic momentum projection M = ± 1 on the direction of the magnetic field. The selection rules of the exciton-photon interaction have two origins. The first one, of geometrical-type, is expressed through the scalar products of the two-types circular polarizations. They depend on the in-plane wave vectors k∥ even in the case of dipole-active transitions, because the cavity photons have an oblique incidence to the surface of the QW. Another origin is related with the numbers ne and nh of the LQ levels of electrons and heavy-holes taking part in the magnetoexciton formation. So, the dipole-active transitions take place for the condition ne = nh, whereas in the quadrupole-active transitions the relation is ne = nh ± 1. It was shown that the Rabi frequency ΩR of the polariton branches and the magnetoexciton oscillator strength fosc increase in dependence on the magnetic field strength B as ΩR ~ √B, and fosc ~ B. The optical gyrotropy effects may be revealed if changing the sign of the photon circular polarization at a given sign of the wave vector longitudinal projection kz or equivalently changing the sign of the longitudinal projection kz at the same selected light circular polarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy