SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lichtschlag Anna) srt2:(2020-2023)"

Sökning: WFRF:(Lichtschlag Anna) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carpenter, Stephen, et al. (författare)
  • Using Unoccupied Aerial Vehicles (UAVs) to Map Seagrass Cover from Sentinel-2 Imagery
  • 2022
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 14:3, s. 477-477
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrass habitats are ecologically valuable and play an important role in sequestering and storing carbon. There is, thus, a need to estimate seagrass percentage cover in diverse environments in support of climate change mitigation, marine spatial planning and coastal zone management. In situ approaches are accurate but time-consuming, expensive and may not represent the larger spatial units collected by satellite imaging. Hence, there is a need for a consistent methodology that uses accurate point-based field surveys to deliver high-quality mapping of percentage seagrass cover at large spatial scales. Here, we develop a three-step approach that combines in situ (quadrats), aerial (unoccupied aerial vehicle—UAV) and satellite data to map percentage seagrass cover at Turneffe Atoll, Belize, the largest atoll in the northern hemisphere. First, the optical bands of four UAV images were used to calculate seagrass cover, in combination with in situ data. The seagrass cover calculated from the UAV was then used to develop training and validation datasets to estimate seagrass cover in Sentinel-2 pixels. Next, non-seagrass areas were identified in the Sentinel-2 data and removed by object-based classification, followed by a pixel-based regression to calculate seagrass percentage cover. Using this approach, percentage seagrass cover was mapped using UAVs (R2 = 0.91 between observed and mapped distributions) and using Sentinel-2 data (R2 = 0.73). This work provides the first openly available and explorable map of seagrass percentage cover across Turneffe Atoll, where we estimate approximately 242 km2 of seagrass above 10% cover is located. We estimate that this approach offers 30 times more data for training satellite data than traditional methods, therefore presenting a substantial reduction in cost-per-point for data. Furthermore, the increase in data helps deliver a high-quality seagrass cover map, suitable for resolving trends of deteriorating, stable or recovering seagrass environments at 10 m2 resolution to underpin evidence-based management and conservation of seagrass.
  •  
2.
  • Garcia-Martin, E. Elena, et al. (författare)
  • Sources, Composition, and Export of Particulate Organic Matter Across British Estuaries
  • 2023
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 128:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Estuaries receive and process a large amount of particulate organic carbon (POC) prior to its export into coastal waters. Studying the origin of this POC is key to understanding the fate of POC and the role of estuaries in the global carbon cycle. Here, we evaluated the concentrations of POC, as well as particulate organic nitrogen (PON), and used stable carbon and nitrogen isotopes to assess their sources across 13 contrasting British estuaries during five different sampling campaigns over 1 year. We found a high variability in POC and PON concentrations across the salinity gradient, reflecting inputs, and losses of organic material within the estuaries. Catchment land cover appeared to influence the contribution of POC to the total organic carbon flux from the estuary to coastal waters, with POC contributions >36% in estuaries draining catchments with a high percentage of urban/suburban land, and <11% in estuaries draining catchments with a high peatland cover. There was no seasonal pattern in the isotopic composition of POC and PON, suggesting similar sources for each estuary over time. Carbon isotopic ratios were depleted (-26.7 +/- 0.42 parts per thousand, average +/- sd) at the lowest salinity waters, indicating mainly terrigenous POC (TPOC). Applying a two-source mixing model, we observed high variability in the contribution of TPOC at the highest salinity waters between estuaries, with a median value of 57%. Our results indicate a large transport of terrigenous organic carbon into coastal waters, where it may be buried, remineralized, or transported offshore. Plain Language Summary Estuaries transport and process a large amount terrigenous particulate organic matter (i.e., carbon and nitrogen) prior to its export to coastal waters. In order to understand the fate of organic carbon and the role of estuaries in the global carbon cycle it is essential to improve our knowledge on its composition, origin, and amount of carbon transported. We quantified the elemental concentrations and stable isotopes composition of carbon and nitrogen to quantify the amount of terrigenous particulate organic matter transported by 13 British estuaries, which drain catchments of diverse land cover under different hydrological conditions. We found a great variability in particulate organic carbon (POC) and particulate organic nitrogen concentrations across the salinity gradient, implying inputs, and losses of material within the estuaries. Each estuary had similar sources of particulate material throughout the year. In most of the estuaries, the POC had a terrigenous origin at the lowest salinity waters. The terrigenous organic carbon contribution decreased toward coastal waters with an average contribution of 57% at the highest salinity waters, indicating a large transport of terrigenous organic carbon into coastal waters.
  •  
3.
  •  
4.
  • Jones, Daniel O.B., et al. (författare)
  • Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific)
  • 2021
  • Ingår i: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 197:September-October 2021
  • Tidskriftsartikel (refereegranskat)abstract
    • To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached >2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
  •  
5.
  • Price, David M., et al. (författare)
  • Quantifying the Intra-Habitat Variation of Seagrass Beds with Unoccupied Aerial Vehicles (UAVs)
  • 2022
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 14:3, s. 480-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate knowledge of the spatial extent of seagrass habitats is essential for monitoring and management purposes given their ecological and economic significance. Extent data are typically presented in binary (presence/absence) or arbitrary, semi-quantitative density bands derived from low-resolution satellite imagery, which cannot resolve fine-scale features and intra-habitat variability. Recent advances in consumer-grade unoccupied aerial vehicles (UAVs) have advanced our ability to survey large areas at higher resolution and at lower cost. This has improved the accessibility of mapping technologies to developing coastal nations, where a large proportion of the world’s seagrass habitats are found. Here, we present the application of UAV-gathered imagery to determine seagrass habitat extent and percent of canopy cover. Four contrasting sites were surveyed in the Turneffe Atoll Marine Reserve, Belize, and seagrass canopy cover was ground truthed from in situ quadrats. Orthomosaic images were created for each site from the UAV-gathered imagery. Three modelling techniques were tested to extrapolate the findings from quadrats to spatial information, producing binary (random forest) and canopy cover (random forest regression and beta regression) habitat maps. The most robust model (random forest regression) had an average absolute error of 6.8–11.9% (SE of 8.2–14), building upon previous attempts at mapping seagrass density from satellite imagery, which achieved errors between 15–20% approximately. The resulting maps exhibited great intra-habitat heterogeneity and different levels of patchiness, which were attributed to site energetics and, possibly, species composition. The extra information in the canopy cover maps provides greater detail and information for key management decisions and provides the basis for future spatial studies and monitoring programmes.
  •  
6.
  • Robinson, Adam H., et al. (författare)
  • Multiscale characterisation of chimneys/pipes : Fluid escape structures within sedimentary basins
  • 2021
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 106
  • Tidskriftsartikel (refereegranskat)abstract
    • Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. The properties of fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner pockmark complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi-disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multi-frequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across a wide range of length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy