SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Lietaer Nicolas)
 

Search: WFRF:(Lietaer Nicolas) > (2016) > Cost-Efficient Wafe...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding

Bleiker, Simon J. (author)
KTH,Mikro- och nanosystemteknik
Visser Taklo, Maaike Margrete (author)
Department of Instrumentation, SINTEF ICT, Norway
Lietaer, Nicolas (author)
Department of Microsystems and Nanotechnology, SINTEF ICT, Norway
show more...
Vogl, Andreas (author)
Department of Microsystems and Nanotechnology, SINTEF ICT, Norway
Bakke, Thor (author)
Department of Microsystems and Nanotechnology, SINTEF ICT, Norway
Niklaus, Frank (author)
KTH,Mikro- och nanosystemteknik
show less...
 (creator_code:org_t)
2016-10-18
2016
English.
In: Micromachines. - Basel, Switzerland : Multidisciplinary Digital Publishing Institute (MDPI). - 2072-666X. ; 7:10, s. 192-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS) transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based on low-temperature adhesive wafer bonding, which ensures full complementary metal-oxide-semiconductor (CMOS) compatibility. All necessary fabrication steps for the wafer bonding, such as cavity formation and deposition of the adhesive, are performed on the capping substrate. The polymer adhesive is deposited by spray-coating on the capping wafer containing the cavities. Thus, no lithographic patterning of the polymer adhesive is needed, and material waste is minimized. Furthermore, this process does not require any additional fabrication steps on the device wafer, which lowers the process complexity and fabrication costs. We demonstrate the proposed capping method by packaging two different MEMS devices. The two MEMS devices include a vibration sensor and an acceleration switch, which employ two different electrical interconnection schemes. The experimental results show wafer-level capping with excellent bond quality due to the re-flow behavior of the polymer adhesive. No impediment to the functionality of the MEMS devices was observed, which indicates that the encapsulation does not introduce significant tensile nor compressive stresses. Thus, we present a highly versatile, robust, and cost-efficient capping method for components such as MEMS and imaging sensors.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Keyword

micro electro-mechanical systems (MEMS)
imaging sensor
packaging
adhesive wafer bonding
benzocyclobutene (BCB)
Electrical Engineering
Elektro- och systemteknik

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view