SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liin Sara) srt2:(2022)"

Sökning: WFRF:(Liin Sara) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdullaeva, Oliya, et al. (författare)
  • Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • H2O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2O2). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2O2-sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2O2 delivery system, paving the way to ROS-based organic bioelectronics.
  •  
2.
  • Castiglione, Alessandro, et al. (författare)
  • Docosahexaenoic acid normalizes QT interval in long QT type 2 transgenic rabbit models in a genotype-specific fashion
  • 2022
  • Ingår i: Europace. - : OXFORD UNIV PRESS. - 1099-5129 .- 1532-2092. ; 24:3, s. 511-522
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Long QT syndrome (LQTS) is a cardiac channelopathy predisposing to ventricular arrhythmias and sudden cardiac death. Since current therapies often fail to prevent arrhythmic events in certain LQTS subtypes, new therapeutic strategies are needed. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, which enhances the repolarizing I-Ks current. Methods and results We investigated the effects of DHA in wild type (WT) and transgenic long QT Type 1 (LQT1; loss of I-Ks), LQT2 (loss of I-Kr), LQT5 (reduction of I-Ks), and LQT2-5 (loss of I-Kr and reduction of I-Ks) rabbits. In vivo ECGs were recorded at baseline and after 10 mu M/kg DHA to assess changes in heart-rate corrected QT (QTc) and short-term variability of QT (STVQT). Ex vivo monophasic action potentials were recorded in Langendorff-perfused rabbit hearts, and action potential duration (APD(75)) and triangulation were assessed. Docosahexaenoic acid significantly shortened QTc in vivo only in WT and LQT2 rabbits, in which both alpha- and beta-subunits of I-K(s)-conducting channels are functionally intact. In LQT2, this led to a normalization of QTc and of its short-term variability. Docosahexaenoic acid had no effect on QTc in LQT1, LQT5, and LQT2-5. Similarly, ex vivo, DHA shortened APD(75) in WT and normalized it in LQT2, and additionally decreased AP triangulation in LQT2. Conclusions Docosahexaenoic acid exerts a genotype-specific beneficial shortening/normalizing effect on QTc and APD(75) and reduces pro-arrhythmia markers STVQT and AP triangulation through activation of I-Ks in LQT2 rabbits but has no effects if either alpha- or beta-subunits to I-Ks are functionally impaired. Docosahexaenoic acid could represent a new genotype-specific therapy in LQT2.
  •  
3.
  • Frampton, Damon, et al. (författare)
  • Subtype-specific responses of hKv7.4 and hKv7.5 channels to polyunsaturated fatty acids reveal an unconventional modulatory site and mechanism
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The K(V)7.4 and K(V)7.5 subtypes of voltage -gated potassium channels play a role in important physiological processes such as sound amplification in the cochlea and adjusting vascular smooth muscle tone. Therefore, the mechanisms that regulate K(V)7.4 and K(V)7.5 channel function are of interest. Here, we study the effect of polyunsaturated fatty acids (PUFAs) on human K(V)7.4 and KV7.5 channels expressed in Xenopus oocytes. We report that PUFAs facilitate activation of hK(V)7.5 by shifting the V50 of the conductance versus voltage (G(V)) curve toward more negative voltages. This response depends on the head group charge, as an uncharged PUFA analogue has no effect and a positively charged PUFA analogue induces positive V-50 shifts. In contrast, PUFAs inhibit activation of hK(V)7.4 by shifting V-50 toward more positive voltages. No effect on V-50 of hK(V)7.4 is observed by an uncharged or a positively charged PUFA analogue. Thus, the hK(V)7.5 channel's response to PUFAs is analogous to the one previously observed in hK(V)7.1-7.3 channels, whereas the hK(V)7.4 channel response is opposite, revealing subtype-specific responses to PUFAs. We identify a unique inner PUFA interaction site in the voltage-sensing domain of hKV7.4 underlying the PUFA response, revealing an unconventional mechanism of modulation of hK(V)7.4 by PUFAs.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy