SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lilienthal R.) srt2:(2010-2014)"

Sökning: WFRF:(Lilienthal R.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Griffin, M. J., et al. (författare)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
2.
  • Canelhas, Daniel R., 1983-, et al. (författare)
  • Improved local shape feature stability through dense model tracking
  • 2013
  • Ingår i: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). - : IEEE. - 9781467363587 ; , s. 3203-3209
  • Konferensbidrag (refereegranskat)abstract
    • In this work we propose a method to effectively remove noise from depth images obtained with a commodity structured light sensor. The proposed approach fuses data into a consistent frame of reference over time, thus utilizing prior depth measurements and viewpoint information in the noise removal process. The effectiveness of the approach is compared to two state of the art, single-frame denoising methods in the context of feature descriptor matching and keypoint detection stability. To make more general statements about the effect of noise removal in these applications, we extend a method for evaluating local image gradient feature descriptors to the domain of 3D shape descriptors. We perform a comparative study of three classes of such descriptors: Normal Aligned Radial Features, Fast Point Feature Histograms and Depth Kernel Descriptors; and evaluate their performance on a real-world industrial application data set. We demonstrate that noise removal enabled by the dense map representation results in major improvements in matching across all classes of descriptors as well as having a substantial positive impact on keypoint detection reliability
  •  
3.
  • Canelhas, Daniel R., 1983-, et al. (författare)
  • SDF tracker : a parallel algorithm for on-line pose estimation and scene reconstruction from depth images
  • 2013
  • Ingår i: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). - : IEEE. - 9781467363587 ; , s. 3671-3676
  • Konferensbidrag (refereegranskat)abstract
    • Ego-motion estimation and environment mapping are two recurring problems in the field of robotics. In this work we propose a simple on-line method for tracking the pose of a depth camera in six degrees of freedom and simultaneously maintaining an updated 3D map, represented as a truncated signed distance function. The distance function representation implicitly encodes surfaces in 3D-space and is used directly to define a cost function for accurate registration of new data. The proposed algorithm is highly parallel and achieves good accuracy compared to state of the art methods. It is suitable for reconstructing single household items, workspace environments and small rooms at near real-time rates, making it practical for use on modern CPU hardware
  •  
4.
  •  
5.
  • Trincavelli, Marco, 1981-, et al. (författare)
  • Optimizing the operating temperature for an array of MOX sensors on an open sampling system
  • 2011
  • Ingår i: Olfaction and electronic nose. - : AIP. - 9780735409200 ; , s. 225-227
  • Konferensbidrag (refereegranskat)abstract
    • Chemo-resistive transduction is essential for capturing the spatio-temporal structure of chemical compounds dispersed in different environments. Due to gas dispersion mechanisms, namely diffusion, turbulence and advection, the sensors in an open sampling system, i.e. directly exposed to the environment to be monitored, are exposed to low concentrations of gases with many fluctuations making, as a consequence, the identification and monitoring of the gases even more complicated and challenging than in a controlled laboratory setting. Therefore, tuning the value of the operating temperature becomes crucial for successfully identifying and monitoring the pollutant gases, particularly in applications such as exploration of hazardous areas, air pollution monitoring, and search and rescue I. In this study we demonstrate the benefit of optimizing the sensor's operating temperature when the sensors are deployed in an open sampling system, i.e. directly exposed to the environment to be monitored.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy