SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linares Pasten Javier A.) "

Sökning: WFRF:(Linares Pasten Javier A.)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aevarsson, Arnthór, et al. (författare)
  • Going to extremes - a metagenomic journey into the dark matter of life
  • 2021
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 1574-6968. ; 368:12
  • Forskningsöversikt (refereegranskat)abstract
    • The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.
  •  
2.
  • Ahlqvist, Josefin, et al. (författare)
  • Crystal structure and initial characterization of a novel archaeal-like Holliday junction-resolving enzyme from Thermus thermophilus phage Tth15-6
  • 2022
  • Ingår i: Acta crystallographica. Section D, Structural biology. - 2059-7983. ; 78:Pt 2, s. 212-227
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the production, characterization and structure determination of a novel Holliday junction-resolving enzyme. The enzyme, termed Hjc_15-6, is encoded in the genome of phage Tth15-6, which infects Thermus thermophilus. Hjc_15-6 was heterologously produced in Escherichia coli and high yields of soluble and biologically active recombinant enzyme were obtained in both complex and defined media. Amino-acid sequence and structure comparison suggested that the enzyme belongs to a group of enzymes classified as archaeal Holliday junction-resolving enzymes, which are typically divalent metal ion-binding dimers that are able to cleave X-shaped dsDNA-Holliday junctions (Hjs). The crystal structure of Hjc_15-6 was determined to 2.5 Å resolution using the selenomethionine single-wavelength anomalous dispersion method. To our knowledge, this is the first crystal structure of an Hj-resolving enzyme originating from a bacteriophage that can be classified as an archaeal type of Hj-resolving enzyme. As such, it represents a new fold for Hj-resolving enzymes from phages. Characterization of the structure of Hjc_15-6 suggests that it may form a dimer, or even a homodimer of dimers, and activity studies show endonuclease activity towards Hjs. Furthermore, based on sequence analysis it is proposed that Hjc_15-6 has a three-part catalytic motif corresponding to E-SD-EVK, and this motif may be common among other Hj-resolving enzymes originating from thermophilic bacteriophages.
  •  
3.
  • Ahlqvist, Josefin, et al. (författare)
  • Crystal structure of DNA polymerase I from Thermus phage G20c
  • 2022
  • Ingår i: Acta crystallographica. Section D, Structural biology. - 2059-7983. ; 78:Pt 11, s. 1384-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SβαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SβαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SβαR motif, was first determined to 2.19 Å resolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Å resolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.
  •  
4.
  • Allahgholi, Leila, et al. (författare)
  • Exploring a novel β-1,3-glucanosyltransglycosylase, MlGH17B, from a marine Muricauda lutaonensis strain for modification of laminari-oligosaccharides
  • Ingår i: Glycobiology. - 1460-2423.
  • Tidskriftsartikel (refereegranskat)abstract
    • The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 °C and 73.2 °C, but an activity optimum at 20 °C, indicating temperature sensitive active site interactions. MlGH17B uses β-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and + 2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming β-1,3 glucan acceptor, making a β-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several β-1,6-linked branches. The modelled structure revealed an active site comprising five subsites: three glycone (-3, -2 and - 1) and two aglycone (+1 and + 2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-β-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-β-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modelled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny.
  •  
5.
  • Allahgholi, Leila, et al. (författare)
  • Fermentation of the Brown Seaweed Alaria esculenta by a Lactic Acid Bacteria Consortium Able to Utilize Mannitol and Laminari-Oligosaccharides
  • 2023
  • Ingår i: Fermentation. - 2311-5637. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The brown seaweed Alaria esculenta is the second most cultivated species in Europe, and it is therefore of interest to expand its application by developing food products. In this study, a lactic acid bacteria consortium (LAB consortium) consisting of three Lactiplantibacillus plantarum strains (relative abundance ~94%) and a minor amount of a Levilactobacillus brevis strain (relative abundance ~6%) was investigated for its ability to ferment carbohydrates available in brown seaweed. The consortium demonstrated the ability to ferment glucose, mannitol, galactose, mannose, and xylose, of which glucose and mannitol were the most favored substrates. No growth was observed on fucose, mannuronic and guluronic acid. The consortium used different pathways for carbohydrate utilization and produced lactic acid as the main metabolite. In glucose fermentation, only lactic acid was produced, but using mannitol as a carbohydrate source resulted in the co-production of lactic acid, ethanol, and succinate. Xylose fermentation resulted in acetate production. The consortium was also able to utilize laminari-oligosaccharides (DP2-4), obtained after enzymatic hydrolysis of laminarin, and produced lactic acid as a metabolite. The consortium could grow directly on A. esculenta, resulting in a pH decrease to 3.8 after 7 days of fermentation. Incubation of the same seaweed in corresponding conditions without inoculation resulted in spoilage of the seaweed by endogenous bacteria.
  •  
6.
  • Ara, Kazi Zubaida Gulshan, et al. (författare)
  • Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The genome of Rhodothermus marinus DSM 4253 encodes six glycoside hydrolases (GH) classified under GH family 3 (GH3): RmBgl3A, RmBgl3B, RmBgl3C, RmXyl3A, RmXyl3B and RmNag3. The biochemical function, modelled 3D-structure, gene cluster and evolutionary relationships of each of these enzymes were studied. The six enzymes were clustered into three major evolutionary lineages of GH3: β-N-acetyl-glucosaminidases, β-1,4-glucosidases/β-xylosidases and macrolide β-glucosidases. The RmNag3 with additional β-lactamase domain clustered with the deepest rooted GH3-lineage of β-N-acetyl-glucosaminidases and was active on acetyl-chitooligosaccharides. RmBgl3B displayed β-1,4-glucosidase activity and was the only representative of the lineage clustered with macrolide β-glucosidases from Actinomycetes. The β-xylosidases, RmXyl3A and RmXyl3B, and the β-glucosidases RmBgl3A and RmBgl3C clustered within the major β-glucosidases/β-xylosidases evolutionary lineage. RmXyl3A and RmXyl3B showed β-xylosidase activity with different specificities for para-nitrophenyl (pNP)-linked substrates and xylooligosaccharides. RmBgl3A displayed β-1,4-glucosidase/β-xylosidase activity while RmBgl3C was active on pNP-β-Glc and β-1,3-1,4-linked glucosyl disaccharides. Putative polysaccharide utilization gene clusters were also investigated for both R. marinus DSM 4253 and DSM 4252T (homolog strain). The analysis showed that in the homolog strain DSM 4252T Rmar_1080 (RmXyl3A) and Rmar_1081 (RmXyl3B) are parts of a putative polysaccharide utilization locus (PUL) for xylan utilization.
  •  
7.
  • Ara, Kazi Zubaida Gulshan, et al. (författare)
  • Engineering CGTase to improve synthesis of alkyl glycosides
  • 2021
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423. ; 31:5, s. 603-612
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkyl glycoside surfactants with elongated carbohydrate chains are useful in different applications due to their improved biocompatibility. Cyclodextrin glucanotransferases can catalyse the elongation process through the coupling reaction. However, due to the presence of a hydrophobic tail, the interaction between an alkyl glycoside acceptor and the active site residues is weaker than the interaction with maltooligosaccharides at the corresponding site. Here we report the mutations of F197, G263 and E266 near the acceptor subsites in the CGTase CspCGT13 from Carboxydocella sp. The results showed that substitutions of both F197 and G263 were important for the binding of acceptor substrate dodecyl maltoside during coupling reaction. The double mutant F197Y/G263A showed enhanced coupling activity and displayed a 2-fold increase of the primary coupling product using γ-cyclodextrin as donor when compared to wildtype CspCGT13. Disproportionation activity was also reduced, which was also the case for another double mutant (F197Y/E266A) that however not showed the corresponding increase in coupling. A triple mutant F197Y/G263A/E266A maintained the increase in primary coupling product (1.8-fold increase) using dodecyl maltoside as acceptor, but disproportionation was approximately at the same level as in the double mutants. In addition, hydrolysis of starch was slightly increased by the F197Y and G263A substitutions, indicating that interactions at both positions influenced the selectivity between glycosyl and alkyl moieties.
  •  
8.
  • Aristizábal-Lanza, Lucía, et al. (författare)
  • Comparison of the enzymatic depolymerization of polyethylene terephthalate and AkestraTM using Humicola insolens cutinase
  • 2022
  • Ingår i: Frontiers in Chemical Engineering. - : Frontiers Media SA. - 2673-2718. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The enzymatic depolymerization of synthetic polyesters has become of great interest in recycling plastics. Most of the research in this area focuses on the depolymerization of polyethylene terephthalate (PET) due to its widespread use in various applications. However, the enzymatic activity on other commercial polyesters is less frequently investigated. Therefore, AkestraTM attracted our attention, which is a copolymer derived from PET with a partially biobased spirocyclic acetal structure. In this study, the activity of Humicola insolens cutinase (HiCut) on PET and AkestraTM films and powder was investigated. HiCut showed higher depolymerization activity on amorphous PET films than on Akestra™ films. However, an outstanding performance was achieved on AkestraTM powder, reaching 38% depolymerization in 235h, while only 12% for PET powder. These results are consistent with the dependence of the enzymes on the crystallinity of the polymer since Akestra™ is amorphous while the PET powder has 14% crystallinity. On the other hand, HiCut docking studies and molecular dynamic simulations (MD) suggested that the PET-derived mono (hydroxyethyl)terephthalate dimer (MHET)2 is a hydrolyzable ligand, producing terephthalic acid (TPA), while the Akestra™-derived TPA-spiroglycol ester is not, which is consistent with the depolymerization products determined experimentally. MD studies also suggest ligand-induced local conformational changes in the active site.
  •  
9.
  • Aronsson, Anna, et al. (författare)
  • Structural insights of RmXyn10A – A prebiotic-producing GH10 xylanase with a non-conserved aglycone binding region
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Proteins and Proteomics. - : Elsevier BV. - 1570-9639. ; 1866:2, s. 292-306
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrolysis of arabinoxylan (AX) by glycoside hydrolase family 10 (GH10) xylanases produces xylo- and arabinoxylo-oligosaccharides ((A)XOS) which have shown prebiotic effects. The thermostable GH10 xylanase RmXyn10A has shown great potential to produce (A)XOS. In this study, the structure of RmXyn10A was investigated, the catalytic module by homology modelling and site-directed mutagenesis and the arrangement of its five domains by small-angle X-ray scattering (SAXS). Substrate specificity was explored in silico by manual docking and molecular dynamic simulations. It has been shown in the literature that the glycone subsites of GH10 xylanases are well conserved and our results suggest that RmXyn10A is no exception. The aglycone subsites are less investigated, and the modelled structure of RmXyn10A suggests that loop β6α6 in the aglycone part of the active site contains a non-conserved α-helix, which blocks the otherwise conserved space of subsite +2. This structural feature has only been observed for one other GH10 xylanase. In RmXyn10A, docking revealed two alternative binding regions, one on either side of the α-helix. However, only one was able to accommodate arabinose-substitutions and the mutation study suggests that the same region is responsible for binding XOS. Several non-conserved structural features are most likely to be responsible for providing affinity for arabinose-substitutions in subsites +1 and +2. The SAXS rigid model of the modular arrangement of RmXyn10A displays the catalytic module close to the cell-anchoring domain while the carbohydrate binding modules are further away, likely explaining the observed lack of contribution of the CBMs to activity.
  •  
10.
  • Bustos, Atma-Sol, et al. (författare)
  • Interaction between Myricetin Aggregates and Lipase under Simplified Intestinal Conditions
  • 2020
  • Ingår i: Foods. - : MDPI AG. - 2304-8158. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Myricetin, a flavonoid found in the plant kingdom, has previously been identified as a food molecule with beneficial effects against obesity. This property has been related with its potential to inhibit lipase, the enzyme responsible for fat digestion. In this study, we investigate the interaction between myricetin and lipase under simplified intestinal conditions from a colloidal point of view. The results show that myricetin form aggregates in aqueous medium and under simplified intestinal condition, where it was found that lipase is in its monomeric form. Although lipase inhibition by myricetin at a molecular level has been reported previously, the results of this study suggest that myricetin aggregates inhibit lipase by a sequestering mechanism as well. The size of these aggregates was determined to be in the range of a few nm to >200 nm.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (34)
forskningsöversikt (3)
bokkapitel (2)
annan publikation (1)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nordberg Karlsson, E ... (17)
Adlercreutz, Patrick (7)
Hreggvidsson, Gudmun ... (7)
Fridjonsson, Olafur ... (6)
Zhang, Baozhong (5)
Nilsson, Lars (5)
visa fler...
Grey, Carl (4)
Håkansson, Maria (3)
Aevarsson, Arnthór (3)
Ahlqvist, Josefin (3)
Al-Karadaghi, Salam (3)
Mankar, Smita V. (2)
Bergenståhl, Björn (2)
Kaczorowska, Anna-Ka ... (2)
Dabrowski, Slawomir (2)
Glomsaker, Eirin (2)
Gudmundsson, Hördur (2)
Teixeira, Cristina (1)
Nouri, Mehrnaz (1)
Aasen, Inga Marie (1)
Svensson, Anders (1)
Walse, Björn (1)
Liu, Yang (1)
Hatti-Kaul, Rajni (1)
Wang, Lei (1)
Rodriguez Meizoso, I ... (1)
Youssef, Noha (1)
Adalsteinsson, Björn ... (1)
Altenbuchner, Joseph (1)
Arsin, Hasan (1)
Átlasson, Úlfur Áugú ... (1)
Brandt, David (1)
Cichowicz-Cieślak, M ... (1)
Cornish, Katy A S (1)
Courtin, Jérémy (1)
Dahle, Håkon (1)
Djeffane, Samia (1)
Dorawa, Sebastian (1)
Dusaucy, Julia (1)
Enault, Francois (1)
Fedøy, Anita-Elin (1)
Freitag-Pohl, Stefan ... (1)
Galiez, Clovis (1)
Guérin, Mickael (1)
Gundesø, Sigurd E (1)
Gudmundsdóttir, Elis ... (1)
Henke, Christian (1)
Helleux, Alexandra (1)
Henriksen, Jørn Remi (1)
Hjörleifdóttir, Sigr ... (1)
visa färre...
Lärosäte
Lunds universitet (40)
Högskolan Kristianstad (1)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Teknik (28)
Naturvetenskap (19)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy