SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lind Thomas Docent 1965 ) "

Sökning: WFRF:(Lind Thomas Docent 1965 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lind, Thomas, Docent, 1965-, et al. (författare)
  • Developmental low-dose exposure to bisphenol A induces chronic inflammation, bone marrow fibrosis and reduces bone stiffness in female rat offspring only
  • 2019
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 177
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Developmental exposure to low doses of the endocrine disruptor bisphenol A (BPA) is known to alter bone tissue in young rodents, although how bone tissue is affected in aged animals is not well known. We have recently shown that low-dose developmental exposure to BPA increases procollagen type I N-terminal propeptide (P1NP) levels, a peptide formed during type 1 collagen synthesis, in plasma of 5-week-old female rat offspring while male offspring showed reduced bone size.Objective: To analyze offspring bone phenotype at 52 weeks of age and clarify whether the BPA-induced increase in P1NP levels at 5 weeks is an early sign of bone marrow fibrosis development.Methods: As in our 5-week study, pregnant Fischer 344 rats were exposed to BPA via drinking water corresponding to 0.5 mu g/kg BW/day (BPA0.5), which is in the range of human daily exposure, or 50 mu g/kg BW/day (BPA50) from gestational day 3.5 until postnatal day 22. Controls were given only vehicle. The offspring were sacrificed at 52 weeks of age. Bone effects were analyzed using peripheral quantitative and micro-computed tomography (microCT), 3-point bending test, plasma markers and histological examination.Results: Compared to a smaller bone size at 5 weeks, at the age of 52 weeks, femur size in male offspring had been normalized in developmentally BPA-exposed rats. The 52-week-old female offspring showed, like the 5-week-old siblings, higher plasma P1NP levels compared to controls but no general increasing bone growth or strength. However, 2 out of 14 BPA-exposed female offspring bones developed extremely thick cortices later in life, discovered by systematic in vivo microCT scanning during the study. This was not observed in male offspring or in female controls. Biomechanical testing revealed that both doses of developmental BPA exposure reduced femur stiffness only in female offspring. In addition, histological analysis showed an increased number of fibrotic lesions only in the bone man ow of female rat offspring developmentally exposed to BPA. In line with this, plasma markers of inflammation, Tnf (in BPA0.5) and Timpl (in BPA50) were increased exclusively in female offspring.Conclusions: Developmental BPA exposure at an environmentally relevant concentration resulted in female specific effects on bone as well as on plasma biomarkers of collagen synthesis and inflammation. Even a dose approximately eight times lower than the current temporary EFSA human tolerable daily intake of 4 mu g/kg BW/day, appeared to induce bone stiffness reduction, bone man ow fibrosis and chronic inflammation in female rat offspring later in life.
  •  
2.
  • Lind, Thomas, Docent, 1965-, et al. (författare)
  • Studies of indirect and direct effects of hypervitaminosis A on rat bone by comparing free access to food and pair-feeding.
  • 2018
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 123:2, s. 82-85
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The most prominent features of hypervitaminosis A in rats are spontaneous fractures and anorexia. Since caloric restriction induces alterations in bone, some effects could be secondary to loss of appetite. To clarify the mechanisms behind vitamin A-induced bone fragility it is necessary to distinguish between direct and indirect effects.MATERIALS AND METHODS: In this study we compared rats fed high doses of vitamin A both with pair-fed controls, which were fed the same amount of chow as that consumed by the vitamin A group to keep food intake the same, and to controls with free access to food.RESULTS: In contrast to the pair-fed animals, rats in the free access group fed high doses of vitamin A for 7 days had 13% lower food intake, 15% lower body weight, and 2.7% shorter femurs compared with controls. In addition, serum biomarkers of bone turnover were reduced. Peripheral quantitative computed tomography of the femurs showed that the bone mineral content, cross sectional area, and periosteal circumference were similarly reduced in the pair-fed and free access groups. However, bone mineral density (BMD) and cortical parameters were only significantly decreased in the free access group.CONCLUSIONS: Our data indicate that the major direct short-term effect of high doses of vitamin A on rat bone is a reduced bone diameter, whereas the effects on bone length, serum biomarkers of bone turnover, BMD, and bone cortex appear to be mainly indirect, caused by a systemic toxicity with loss of appetite, reduced food intake, and general effects on growth.
  •  
3.
  • Byrgazov, Konstantin, et al. (författare)
  • Melphalan flufenamide inhibits osteoclastogenesis by suppressing proliferation of monocytes
  • 2021
  • Ingår i: Bone Reports. - : Elsevier. - 2352-1872. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Myeloma bone disease is a major complication in multiple myeloma affecting quality of life and survival. It is characterized by increased activity of osteoclasts, bone resorbing cells. Myeloma microenvironment promotes excessive osteoclastogenesis, a process of production of osteoclasts from their precursors, monocytes. The effects of two anti-myeloma drugs, melphalan flufenamide (melflufen) and melphalan, on the activity and proliferation of osteoclasts and their progenitors, monocytes, were assessed in this study. In line with previous research, differentiation of monocytes was associated with increased expression of genes encoding DNA damage repair proteins. Hence monocytes were more sensitive to DNA damage-causing alkylating agents than their differentiated progeny, osteoclasts. In addition, differentiated progeny of monocytes showed increased gene expression of immune checkpoint ligands which may potentially create an immunosuppressive microenvironment. Melflufen was ten-fold more active than melphalan in inhibiting proliferation of osteoclast progenitors. Furthermore, melflufen was also superior to melphalan in inhibition of osteoclastogenesis and bone resorption. These results demonstrate that melflufen may exert beneficial effects in patients with multiple myeloma such as reducing bone resorption and immunosuppressive milieu by inhibiting osteoclastogenesis.
  •  
4.
  • Lind, Thomas, Docent, 1965-, et al. (författare)
  • Bones in human CYP26B1 deficiency and rats with hypervitaminosis A phenocopy Vegfa overexpression
  • 2018
  • Ingår i: Bone Reports. - : Elsevier BV. - 2352-1872. ; 9, s. 27-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Angulated femurs are present prenatally both in CYP26B1 deficient humans with a reduced capacity to degrade retinoic acid (RA, the active metabolite of vitamin A), and mice overexpressing vascular endothelial growth factor a (Vegfa). Since excessive ingestion of vitamin A is known to induce spontaneous fractures and as the Vegfa-induced femur angulation in mice appears to be caused by intrauterine fractures, we analyzed bones from a CYP26B1 deficient human and rats with hypervitaminosis A to further explore Vegfa as a mechanistic link for the effect of vitamin A on bone. We show that bone from a human with CYP26B1 mutations displayed periosteal osteoclasts in piles within deep resorption pits, a pathognomonic sign of hypervitaminosis A. Analysis of the human angulated fetal femur revealed excessive bone formation in the marrow cavity and abundant blood vessels. Normal human endothelial cells showed disturbed cell-cell junctions and increased CYP26B1 and VEGFA expression upon RA exposure. Studies in rats showed increased plasma and tissue Vegfa concentrations and signs of bone marrow microhemorrhage on the first day of excess dietary vitamin A intake. Subsequently hypervitaminosis A rats displayed excess bone formation, fibrosis and an increased number of megakaryocytes in the bone marrow, which are known characteristics of Vegfa overexpression. This study supports the notion that the skeletal phenotype in CYP26B1 deficient human bone is caused by excess RA. Our findings suggest that an initial part of the vitamin A mechanism causing bone alterations is mediated by excess Vegfa and disturbed bone marrow microvessel integrity.
  •  
5.
  • Lind, Thomas, Docent, 1965-, et al. (författare)
  • Mast cell chymase has a negative impact on human osteoblasts
  • 2022
  • Ingår i: Matrix Biology. - : Elsevier. - 0945-053X .- 1569-1802. ; 112, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast cells have been linked to osteoporosis and bone fractures, and in a previous study we found that mice lacking a major mast cell protease, chymase, develop increased diaphyseal bone mass. These findings introduce the possibility that mast cell chymase can regulate bone formation, but the underlying mechanism(s) has not previously been investigated. Here we hypothesized that chymase might exert such effects through a direct negative impact on osteoblasts, i.e., the main bone-building cells. Indeed, we show that chymase has a distinct impact on human primary osteoblasts. Firstly, chymase was shown to have pronounced effects on the morphological features of osteoblasts, including extensive cell contraction and actin reorganization. Chymase also caused a profound reduction in the output of collagen from the osteoblasts, and was shown to degrade osteoblast-secreted fibronectin and to activate pro-matrix metallopeptidase-2 released by the osteoblasts. Further, chymase was shown to have a preferential impact on the gene expression, protein output and phosphorylation status of TGF beta-associated signaling molecules. A transcriptomic analysis was conducted and revealed a significant effect of chymase on several genes of importance for bone metabolism, including a reduction in the expression of osteoprotegerin, which was confirmed at the protein level. Finally, we show that chymase interacts with human osteoblasts and is taken up by the cells. Altogether, the present findings provide a functional link between mast cell chymase and osteoblast function, and can form the basis for a further evaluation of chymase as a potential target for intervention in metabolic bone diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy