SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindhagen Elin) srt2:(2002-2004)"

Sökning: WFRF:(Lindhagen Elin) > (2002-2004)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Frost, Britt-Marie, et al. (författare)
  • In vitro activity of the novel cytotoxic agent CHS 828 in childhood acute leukemia
  • 2002
  • Ingår i: Anti-Cancer Drugs. - 0959-4973 .- 1473-5741. ; 13:7, s. 735-742
  • Tidskriftsartikel (refereegranskat)abstract
    • CHS 828, a pyridyl cyanoguanidine, is a new drug candidate now in phase I/II trials, that has shown promising anticancer activity in experimental tumor models and primary cultures of cancer cells from patients. In this study the fluorometric microculture cytotoxicity assay was used for evaluation of CHS 828 in primary cell cultures from children with acute leukemia. The activity of and interaction with the standard drugs, doxorubicin, melphalan, etoposide and cytosine arabinoside (Ara-C), were also assessed. Samples from 65 patients, 42 with acute lymphocytic leukemia (ALL) and 23 with acute myelocytic leukemia (AML) were tested with 72-h continuous drug exposure. There was 50% cell kill at very low CHS 828 concentrations; median IC50 was 0.01 microM in ALL and 0.03 in AML samples (NS) with large interindividual variability in both groups. ALL samples were significantly more sensitive than AML samples to melphalan, doxorubicin and etoposide, but not to Ara-C. In AML samples, combinations between CHS 828 and each of the four standard drugs resulted in significantly lower cell survival than either drug alone. This was also observed in ALL samples, except for Ara-C. Using the additive interaction model, CHS 828 showed a synergistic effect with melphalan in 67%, doxorubicin in 47%, etoposide in 38% and Ara-C in 14% of AML samples. In most ALL samples subadditive effects were found. Further exploration of CHS 828 in childhood leukemia is warranted, especially in AML.
  •  
3.
  • Gullbo, Joachim, et al. (författare)
  • Antitumor efficacy and acute toxicity of the novel dipeptide melphalanyl-p-L-fluorophenylalanine ethyl ester (J1) in vivo.
  • 2004
  • Ingår i: Investigational new drugs. - 0167-6997. ; 22:4, s. 411-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The novel alkylating dipeptide melphalanyl-p-L-fluorophenylalanine ethyl ester (J1) was evaluated for acute toxicity and antitumor activity in mice, with melphalan as a reference. To determine a safe and tolerable dose for efficacy studies the acute toxicity following intravenous injection in the tail vein was monitored using a 14-day schedule with up to four doses. The highest tested dose, 25 micromoles/kg, was considered close to this level, with minor effects on body weight gain but significant effects on hematological parameters. Melphalan and J1 appeared equitoxic with no statistically significant differences. Subsequently a mouse hollow fiber model was employed with subcutaneous implantation of fibers containing human tumor cells. Three different human tumor cell lines as well as two samples of primary human tumor cells (ovarian carcinoma and chronic lymphatic leukemia) were used as tumor models. At the dose level tested there was a marked and statistically significant decrease in both T-cell leukemia CCRF-CEM and small cell lung cancer NCI-H69 tumor cell growth and viability in response to J1 as compared with both placebo and melphalan treated groups. In primary ovarian carcinoma cells only J1 treatment resulted in significant tumor regression (net cell kill). In summary the results indicate that, despite an expected short half time in the blood circulation, the promising in vitro data from the previous studies of J1 seems translatable into the in vivo situation. At equal doses of alkylating units J1, compared to melphalan, was more active in the mouse hollow-fiber model, but showed similar general toxicity.
  •  
4.
  •  
5.
  • Hassan, Saadia Bashir, 1959- (författare)
  • Methods for Preclinical Evaluation of Cytotoxic Drugs : With Special Reference to the Cyanoguanidine CHS 828 and Hollow Fiber Method
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The novel cyanoguanidine CHS 828 has shown promising antitumor activity in many in vitro and in vivo studies. The long-term 14 days in vitro hollow fiber cultures, where tumor cells from different tumor cell lines were cultured inside semipermeable fibers, were more resistant to CHS 828 and other cytotoxic drugs than the shorter-term 3 days cultures. CHS 828 was generally more effective against haematological than solid tumor cells from both cell lines and patients samples. In vivo, the hollow fibers were implanted into immunocompetent rats and the pharmacokinetics, tumor response and/or toxicity (pharmacodynamics) of CHS 828 were successfully assayed. CHS 828 showed higher activity in this model when a more protracted schedule was used. The quantitative relationships between dose, plasma concentration and response (PK/PD model) developed for CHS 828 explained this phenomenon partly by dose-dependent fraction absorbed and partly by a schedule-dependent pharmacodynamic effect.Modelling of the in vitro CHS 828 and standard cytotoxic drugs concentration-time effect data in different tumor cell types and characterization of pattern of change of the potency and the slope of the concentration-time effect curves were performed. The results suggest two different mechanisms of action for CHS 828 and that CHS 828 cytotoxicity may depend on the schedule used.The NF-kB pathway that regulates the transcription of anti-apoptotic genes proved to be inhibited by CHS 828 in different tumor cell lines and the inhibition was correlated to the cell death induced by this agent. CHS 828 did not seem to induce the NF-kB inhibition by affecting the proteasome activity. The in vitro and in vivo hollow fiber methods were also used successfully to evaluate the new paclitaxel formulation, Pacliex. Pacliex had a similar activity to that of the clinically used formulation Taxol®.
  •  
6.
  •  
7.
  • Hovstadius, Peter, et al. (författare)
  • A Phase I Study of CHS 828 in Patients with Solid Tumor Malignancy
  • 2002
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 8:9, s. 2843-2850
  • Tidskriftsartikel (refereegranskat)abstract
    • CHS 828 is a cyanoguanidine, which has demonstrated potent antitumor activity in preclinical tumor models. The activity of CHS 828 in vitro showed only low to moderate correlation to other antineoplastic agents suggesting a unique mechanism of action. Ten females and 6 males (median age 58 years) with solid tumors refractory to standard therapy were included in this Phase I study. The study drug was administered to fasting patients as a single oral dose on days 1–5 of each treatment cycle. Patients received one to six cycles of treatment. The doses ranged from 30 mg to 200 mg (total dose within a cycle). Hematological toxicity was generally mild and dominated by transient thrombocytopenia and lymphocytopenia. Nonhematological toxicity most frequently consisted of nausea, vomiting, diarrhea, fatigue, and localized genital mucositis. The dose-limiting toxicities were thrombocytopenia, thrombosis, esophagitis, diarrhea, and constipation. The recommended Phase II dose of CHS 828 was 20 mg once daily for 5 days in cycles of 28 days duration. The extent of systemic exposure of CHS 828 across patients was approximately dose proportional. The time at which the highest drug concentration occurs was 2.2 ± 1.3 h and half-life was 2.1 ± 0.52 h (mean ± SD). Large intra- and interindividual variation in dose level-adjusted maximum plasma concentration and the area under the curve from time 0 h to infinity were observed. There was an apparent inverse relationship between systemic exposure of CHS 828, and thrombocyte and lymphocyte nadir levels. No objective tumor responses were observed, and 7 patients showed stable disease after two courses of therapy.
  •  
8.
  •  
9.
  • Lindhagen, Elin, et al. (författare)
  • Pharmacodynamic differences between species exemplified by the novel anticancer agent CHS 828
  • 2004
  • Ingår i: Drug development research. - : Wiley. - 0272-4391 .- 1098-2299. ; 61:4, s. 218-226
  • Tidskriftsartikel (refereegranskat)abstract
    • When a candidate drug enters clinical trials, decisions regarding dosing are mainly based on animal data. Occasionally, toxicity problems are faced in the clinic because of unexpected species differences in pharmacokinetics or pharmacodynamics between humans and preclinical species. Fludarabine and topotecan are examples of such drugs. In the first clinical trials of the new agent CHS 828, the maximum tolerated dose was reached earlier than expected from animal data. This paper discusses the issue of species differences in the development of anticancer drugs, and preclinical models for detection and quantification of such differences. Pharmacokinetic and hematological toxicity data of CHS 828 from studies in rats and humans are presented. In vitro sensitivity to CHS 828 and some established cytotoxic agents was measured in lymphocytes from humans and rats and in a panel of human and rodent cell-lines. 10–100 times higher CHS 828 exposure was tolerated by rats than by patients. In both in vitro cell systems, CHS 828 showed higher potency in human cells compared to rodent cells. A species difference was evident also for fludarabine, but not for doxorubicin and cisplatin. CHS 828 pharmacokinetics were similar across species. In conclusion, the lower tolerance of CHS 828 in humans than in rats could be detected in vitro in cultures of peripheral lymphocytes. Preclinical studies of species differences could help the interpretation of in vivo effect studies as well as the choice of starting dose for clinical trials. We suggest peripheral lymphocytes from different species as a potential model system for such studies.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy