SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindholm Caroline) srt2:(2020-2023)"

Sökning: WFRF:(Lindholm Caroline) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindholm, Caroline, 1984-, et al. (författare)
  • Intermittent fasting induces chronic changes in the hepatic gene expression of Red Jungle Fowl (Gallus gallus)
  • 2022
  • Ingår i: BMC Genomics. - London, United Kingdom : Springer Nature. - 1471-2164. ; 23
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Intermittent fasting (IF), the implementation of fasting periods of at least 12 consecutive hours on a daily to weekly basis, has received a lot of attention in recent years for imparting the life-prolonging and health-promoting effects of caloric restriction with no or only moderate actual restriction of caloric intake. IF is also widely practiced in the rearing of broiler breeders, the parent stock of meat-type chickens, who require strict feed restriction regimens to prevent the serious health problems associated with their intense appetites. Although intermittent fasting has been extensively used in this context to reduce feed competition and its resulting stress, the potential of IF in chickens as an alternative and complementary model to rodents has received less investigation. In both mammals and birds, the liver is a key component of the metabolic response to IF, responding to variations in energy balance. Here we use a microarray analysis to examine the liver transcriptomics of wild-type Red Jungle Fowl chickens fed either ad libitum, chronically restricted to around 70% of ad libitum daily or intermittently fasted (IF) on a 2:1 (2 days fed, 1 day fasted) schedule without actual caloric restriction. As red junglefowl are ancestral to domestic chicken breeds, these data serve as a baseline to which existing and future transcriptomic results from farmed birds such as broiler breeders can be compared.Results: We find large effects of feeding regimen on liver transcriptomics, with most of the affected genes relating to energy metabolism. A cluster analysis shows that IF is associated with large and reciprocal changes in genes related to lipid and carbohydrate metabolism, but also chronic changes in genes related to amino acid metabolism (generally down-regulated) and cell cycle progression (generally up-regulated). The overall transcription pattern appears to be one of promoting high proliferative plasticity in response to fluctuations in available energy substrates. A small number of inflammation-related genes also show chronically changed expression profiles, as does one circadian rhythm gene.Conclusions: The increase in proliferative potential suggested by the gene expression changes reported here indicates that birds and mammals respond similarly to intermittent fasting practices. Our findings therefore suggest that the health benefits of periodic caloric restriction are ubiquitous and not restricted to mammals alone. Whether a common fundamental mechanism, for example involving leptin, underpins these benefits remains to be elucidated.
  •  
2.
  • Lindholm, Caroline, 1984-, et al. (författare)
  • Physiological and behavioral effects of intermittent fasting vs daily caloric restriction in meat-type poultry
  • 2023
  • Ingår i: Animal. - : Elsevier. - 1751-7311 .- 1751-732X. ; 17:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Intermittent fasting (IF) is the practice of temporal food restriction to promote metabolic switching between a glucose- and a ketone-based metabolism, which has been reported to come with diverse health benefits. IF practices appear to confer many of the advantages of caloric restriction without restricting total energy intake, and studies in both rodents and humans suggest organism-wide improvements in neurological, cardiovascular and metabolic health. IF is also commonly employed in the commercial rearing of breeding meat-type poultry, i.e. broiler breeders, which require strict feed restriction throughout life to maintain physical health. While the scientific poultry literature holds vast amounts of data on such “skip-a-day” feeding schedules, it has been unclear to what extent avian and mammalian literature may be compared as broiler breeders are typically feed-restricted to around 30% of ad libitum intake even in IF schedules. In this study we set out to disentangle the effects of IF and caloric restriction in meat-type poultry by employing both IF and daily feeding schedules at two different restriction levels. Our results suggest that the physiological response to IF in chickens is only marginally affected by the intensity of feed restriction, while behavioural parameters are more closely related to feeding level and are expected to better mirror animal welfare. Our results suggest that avian and mammalian literature on IF should be comparable. Meat-type chickens do show some peculiarities in response to IF, such as a reduced insulin sensitivity, but it is currently unclear whether this is true for all chickens or is an effect of the intense selection for rapid growth in meat-type chickens.
  •  
3.
  • Priyadarshini, Diana, et al. (författare)
  • Enzymatically Polymerized Organic Conductors on Model Lipid Membranes
  • 2023
  • Ingår i: Langmuir. - : AMER CHEMICAL SOC. - 0743-7463 .- 1520-5827. ; 39:23, s. 8196-8204
  • Tidskriftsartikel (refereegranskat)abstract
    • Seamless integration between biological systems and electricalcomponents is essential for enabling a twinned biochemical-electricalrecording and therapy approach to understand and combat neurologicaldisorders. Employing bioelectronic systems made up of conjugated polymers,which have an innate ability to transport both electronic and ioniccharges, provides the possibility of such integration. In particular,translating enzymatically polymerized conductive wires, recently demonstratedin plants and simple organism systems, into mammalian models, is ofparticular interest for the development of next-generation devicesthat can monitor and modulate neural signals. As a first step towardachieving this goal, enzyme-mediated polymerization of two thiophene-basedmonomers is demonstrated on a synthetic lipid bilayer supported ona Au surface. Microgravimetric studies of conducting films polymerizedin situ provide insights into their interactions with a lipid bilayermodel that mimics the cell membrane. Moreover, the resulting electricaland viscoelastic properties of these self-organizing conducting polymerssuggest their potential as materials to form the basis for novel approachesto in vivo neural therapeutics.
  •  
4.
  • Strakosas, Xenofon, et al. (författare)
  • Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics
  • 2023
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 379:6634, s. 795-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy