SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lisova Elena) srt2:(2021)"

Search: WFRF:(Lisova Elena) > (2021)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • El Hachem, J., et al. (author)
  • Securing system-of-systems through a game theory approach
  • 2021
  • In: Proceedings of the ACM Symposium on Applied Computing. - New York, NY, USA : Association for Computing Machinery. - 9781450381048 ; , s. 1443-1446
  • Conference paper (peer-reviewed)abstract
    • Enabling System-of-Systems (SoS) security is an important activity when engineering SoS solutions like autonomous vehicles, provided that they are also highly safety-critical. An early analysis of such solutions caters for proper security architecture decisions, preventing potential high impact attacks and ensuring people's safety. However, SoS characteristics such as emergent behavior, makes security decision-making at the architectural level a challenging task. To tackle this challenge, it is essential to first address known vulnerabilities related to each CS, that an adversary may exploit to realize his attacks within the unknown SoS environment. In this paper we investigate how to use Game Theory (GT) approaches to guide the architect in choosing an appropriate security solution. We formulate a game with three players and their corresponding strategies and payoffs. The proposal is illustrated on an autonomous quarry example showing its usefulness in supporting a security architect to choose the the most suitable security strategy. 
  •  
2.
  • Gore, Rahul Nandkumar, et al. (author)
  • CoSiNeT : A Lightweight Clock Synchronization Algorithm for Industrial IoT
  • 2021
  • In: IEEE International Conference on Industrial Cyber-Physical Systems ICPS 2021. - 9781728162072
  • Conference paper (peer-reviewed)abstract
    • Recent advances in industrial internet of things~(IIoT) and cyber-physical systems drive Industry 4.0 and lead to advanced applications. The adequate performance of time-critical automation applications depends on a clock synchronization scheme used by control systems. Network packet delay variations adversely impact the clock synchronization performance. The impact is significant in industrial sites, where software and hardware resources heavily contribute to delay variations, and where harsh environmental conditions interfere with communication network dynamics. While existing time synchronization methods for IIoT devices, e.g., Simple Network Time Protocol~(SNTP), provide adequate synchronization in good operating conditions, their performance degrades significantly with deteriorating network conditions. To overcome this issue, we propose a scalable, software-based, lightweight clock synchronization method, called CoSiNeT, for IIoT devices that maintains precise synchronization performance in a wide range of operating conditions. We have conducted measurements in local network deployments such as home and a university campus in order to evaluate the proposed algorithm performance. The results show that CoSiNeT matches well with SNTP and state-of-the-art method in good network conditions in terms of accuracy and precision; however, it outperforms them in degrading network scenarios. In our measurements, in fair network conditions, CoSiNeT improves synchronization performance by 23% and 25% compared to SNTP and state-of-the-art method. In the case of poor network conditions, it improves performance by 43% and 26%, respectively.
  •  
3.
  • Gore, Rahul Nandkumar, et al. (author)
  • CoSiWiNeT : A Clock Synchronization Algorithm for Wide Area IIoT Network
  • 2021
  • In: Applied Sciences. - : MDPI AG. - 2076-3417. ; 11:24
  • Journal article (peer-reviewed)abstract
    • Recent advances in the industrial internet of things (IIoT) and cyber–physical systems drive Industry 4.0 and have led to remote monitoring and control applications that require factories to be connected to remote sites over wide area networks (WAN). The adequate performance of remote applications depends on the use of a clock synchronization scheme. Packet delay variations adversely impact the clock synchronization performance. This impact is significant in WAN as it comprises wired and wireless segments belonging to public and private networks, and such heterogeneity results in inconsistent delays. Highly accurate, hardware–based time synchronization solutions, global positioning system (GPS), and precision time protocol (PTP) are not preferred in WAN due to cost, environmental effects, hardware failure modes, and reliability issues. As a software–based network time protocol (NTP) overcomes these challenges but lacks accuracy, the authors propose a software–based clock synchronization method, called CoSiWiNeT, based on the random sample consensus (RANSAC) algorithm that uses an iterative technique to estimate a correct offset from observed noisy data. To evaluate the algorithm’s performance, measurements captured in a WAN deployed within two cities were used in the simulation. The results show that the performance of the new algorithm matches well with NTP and state–of–the–art methods in good network conditions; however, it outperforms them in degrading network scenarios.
  •  
4.
  • Gore, Rahul Nandkumar, et al. (author)
  • Delay and Jitter Analysis in Industrial Control Systems : A Paper Mill Case Study
  • 2021
  • In: 17th IEEE International Conference on Factory Communication Systems (WFCS) WFCS'21. - 9781665424783 ; , s. 99-106
  • Conference paper (peer-reviewed)abstract
    • Industrial control systems have strict requirements for time-sensitive applications and clock synchronization services. Performance of such applications is adversely impacted by packet delays and jitters. The impact is especially critical in process industries due to harsh environmental conditions. In this paper, we analyze delays and jitters to assess the performance of time-sensitive applications. To this end, we captured and analyzed round trip delay data retrieved from a paper factory. Analysis shows that a sub-millisecond level average delays and the jitters derived from the observed data are sufficient to meet the minimum 10ms update frequency required for most critical control applications. Moreover, the filtered delay variations at the end devices are less than the recommended 150us, which guarantees an adequate time synchronization accuracy in the factory network. Besides, this analysis can provide significant insights into performance bottlenecks for factory applications.
  •  
5.
  • Gore, Rahul Nandkumar (author)
  • Investigating Software-based Clock Synchronization for Industrial Networks
  • 2021
  • Licentiate thesis (other academic/artistic)abstract
    • A rising level of industrialization and advances in Industry 4.0 have resulted in Industrial Internet of Things (IIoT) gaining immense significance in today’s industrial automation systems. IIoT promises to achieve improved productivity, reliability, and revenues by connecting time-constrained embedded systems to “the Internet”. New opportunities bring with them challenges, and in particular for industrial networks, massively interconnected IIoT devices communicating in real-time,  require synchronized operation of devices for the ordering of information collected throughout a  network. Thus,   a   time or clock synchronization service that aligns the devices’ clocks in the network to ensure accurate timestamping and orderly event executions, has gained great importance. Achieving adequate clock synchronization in the industrial domain is challenging due to heterogeneous communication networks and exposure to harsh environmental conditions bringing interference to the communication networks. The investigative study based on existing literature and the envisioned architecture of the future industrial automation system unveils that the key requirements for future industrial networks are to have a cost-effective, accurate, scalable, secured, easy to deploy and maintain clock synchronization solution. Today’s industrial automation systems employ clock synchronization solutions from a wide plethora of hardware and software based solutions. The most economical, highly scalable, maintainable software-based clock synchronization means are best candidates for the identified future requirements as their lack in accuracy compared to hardware solutions could be compensated by predictive software strategies. Thus, the thesis’s overall goal is to enhance the accuracy of software-based clock synchronization in heterogeneous industrial networks using predictable software strategies. The first step towards developing an accurate clock synchronization for heterogeneous industrial networks with real-time requirements is to investigate communication parameters affecting time synchronization accuracy. Towards this goal, we investigated actual industrial network data for packet delay profiles and their impact on clock synchronization performance.  We further analyzed wired and wireless local area networks to identify key network parameters for clock synchronization and proposed an enhanced clock synchronization algorithm CoSiNeT for field IoT devices in industrial networks. CoSiNeT matches well with state-of-the-practice SNTP and state-of-the-art method SPoT in good network conditions in terms of accuracy and precision;  however,  it outperforms them in scenarios with degrading network conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view