SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lizarraga J.) srt2:(2015-2019)"

Sökning: WFRF:(Lizarraga J.) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Delabrouille, J., et al. (författare)
  • Exploring cosmic origins with CORE : Survey requirements and mission design
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ACDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the M5 call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE has 19 frequency channels, distributed over a broad frequency range, spanning the 60-600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 mu K.arcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10(-4) of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. CORE observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300-600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize.
  •  
2.
  • Finelli, F., et al. (författare)
  • Exploring cosmic origins with CORE : Inflation
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2018:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of 1.7 mu K.arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series Exploring Cosmic Origins with CORE. We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10(-3) level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10(-3) level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the f(NL)(local) < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.
  •  
3.
  • Aguilera-Lizarraga, J., et al. (författare)
  • Expression of immune-related genes in rectum and colon descendens of Irritable Bowel Syndrome patients is unrelated to clinical symptoms
  • 2019
  • Ingår i: Neurogastroenterology and Motility. - : Wiley. - 1350-1925 .- 1365-2982. ; 31:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mucosal immune activation has been postulated to play an important role in the pathogenesis of irritable bowel syndrome (IBS). However, data are conflicting and often based on small patient cohorts. Here, we aimed to evaluate the gene expression of a large set of immune-related genes in mucosal biopsies from IBS patients and healthy volunteers (HV). Methods: A total of 171 IBS patients and 127 HV were included in the study. Rectum biopsies were collected from a cohort of 70 HV and 77 IBS patients (Rome III) and colon descendens biopsies from another cohort of 57 HV and 94 IBS patients (Rome II). Gene expression was assessed using OpenArray technology, and validated questionnaires were used to evaluate clinical characteristics (GI symptoms, somatization, anxiety, and depression). Key Results: A subset of IBS patients (33%) with increased immune activation in the colon descendens was identified using multivariate analysis and displayed increased gene expression of IL1B (3-fold change), prostaglandin synthase PTGS2 (2.1-fold change), and the G-protein-coupled receptor MRGPRX2 (10.7-fold change). Clinical characteristics in this subgroup were however similar to the rest of the patient cohort. Analysis of rectal biopsies failed to identify such subgroup of “immuno-active” IBS patients in the other patient cohort. Conclusion: A subset of IBS patients reveals evidence of immune activation in the colon descendens, but not in the rectum; however, gene expression is unrelated to clinical symptoms. To what extent this subgroup might however respond to anti-inflammatory therapy remains to be investigated. © 2019 John Wiley & Sons Ltd
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy