SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ljungström Lars R.) srt2:(2021)"

Sökning: WFRF:(Ljungström Lars R.) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pepic, I., et al. (författare)
  • Early detection of sepsis using artificial intelligence : a scoping review protocol
  • 2021
  • Ingår i: Systematic Reviews. - : Springer Nature. - 2046-4053. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. To decrease the high case fatality rates and morbidity for sepsis and septic shock, there is a need to increase the accuracy of early detection of suspected sepsis in prehospital and emergency department settings. This may be achieved by developing risk prediction decision support systems based on artificial intelligence.Methods: The overall aim of this scoping review is to summarize the literature on existing methods for early detection of sepsis using artificial intelligence. The review will be performed using the framework formulated by Arksey and O’Malley and further developed by Levac and colleagues. To identify primary studies and reviews that are suitable to answer our research questions, a comprehensive literature collection will be compiled by searching several sources. Constrictions regarding time and language will have to be implemented. Therefore, only studies published between 1 January 1990 and 31 December 2020 will be taken into consideration, and foreign language publications will not be considered, i.e., only papers with full text in English will be included. Databases/web search engines that will be used are PubMed, Web of Science Platform, Scopus, IEEE Xplore, Google Scholar, Cochrane Library, and ACM Digital Library. Furthermore, clinical studies that have completed patient recruitment and reported results found in the database ClinicalTrials.gov will be considered. The term artificial intelligence is viewed broadly, and a wide range of machine learning and mathematical models suitable as base for decision support will be evaluated. Two members of the team will test the framework on a sample of included studies to ensure that the coding framework is suitable and can be consistently applied. Analysis of collected data will provide a descriptive summary and thematic analysis. The reported results will convey knowledge about the state of current research and innovation for using artificial intelligence to detect sepsis in early phases of the medical care chain.Ethics and dissemination: The methodology used here is based on the use of publicly available information and does not need ethical approval. It aims at aiding further research towards digital solutions for disease detection and health innovation. Results will be extracted into a review report for submission to a peer-reviewed scientific journal. Results will be shared with relevant local and national authorities and disseminated in additional appropriate formats such as conferences, lectures, and press releases. 
  •  
2.
  • Alsiö, Åsa, 1965, et al. (författare)
  • Impact of obesity on outcome of severe bacterial infections
  • 2021
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Obesity is a rapidly growing global health concern with considerable negative impact on life-time expectancy. It has yet not been clarified if and how obesity impacts outcomes of severe bacterial infections. The aim of this study was to determine how body mass index impacts outcome of severe bacterial infections in a well-defined population-based cohort. Methods This study is based on a cohort of 2196 patients included in a Swedish prospective, population-based, consecutive observational study of the incidence of community-onset severe sepsis and septic shock in adults. All patients with weight and height documented in the medical records on admission were included. Results The case fatality rate (CFR) was negatively correlating with increasing BMI. Outcomes included 28-day CFR (p-value = 0.002), hospital CFR (p-value = 0.039) and 1-year CFR (p-value<0.001). When BMI was applied as continuous variable in a multiple logistic regression together with other possible covariates, we still could discern that BMI was associated with decreasing 28-day CFR (OR = 0.93, 95% CI 0.88-0.98, p-value = 0.009) and 1-year CFR (OR = 0.94, 95% CI 0.91-0.97, p-value<0.001). Conclusion The hypothesis and paradox of obesity being associated with higher survival rates in severe bacterial infections was confirmed in this prospective, population-based observational study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy