SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lobo S) srt2:(2015-2019)"

Sökning: WFRF:(Lobo S) > (2015-2019)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Capozziello, Salvatore, et al. (författare)
  • Hybrid Metric-Palatini Gravity
  • 2015
  • Ingår i: Universe. - : MDPI. - 2218-1997. ; 1:2, s. 199-238
  • Forskningsöversikt (refereegranskat)abstract
    • Recently, the phenomenology of f(R) gravity has been scrutinized. This scrutiny has been motivated by the possibility to account for the self-accelerated cosmic expansion without invoking dark energy sources. Besides, this kind of modified gravity is capable of addressing the dynamics of several self-gravitating systems alternatively to the presence of dark matter. It has been established that both metric and Palatini versions of these theories have interesting features but also manifest severe and different downsides. A hybrid combination of theories, containing elements from both these two formalisms, turns out to be also very successful accounting for the observed phenomenology and is able to avoid some drawbacks of the original approaches. This article reviews the formulation of this hybrid metric-Palatini approach and its main achievements in passing the local tests and in applications to astrophysical and cosmological scenarios, where it provides a unified approach to the problems of dark energy and dark matter.
  •  
7.
  • Harko, Tiberiu, et al. (författare)
  • Coupling matter in modified Q gravity
  • 2018
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 98:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form L similar to f(1)(Q) + f(2)(Q)L-M, where f(1) and f(2) are generic functions of Q, and L-M is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of the Q, when implemented also in the matter sector, would allow more universally consistent and viable realizations of the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the evolution equations and imposing specific functional forms of the functions f(1)(Q) and f(2)(Q), such as power-law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in two general classes of models, and found to feature accelerating expansion at late times.
  •  
8.
  • Harko, T, et al. (författare)
  • Novel couplings between nonmetricity and matter
  • 2018
  • Ingår i: 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, MG 2018. - : World Scientific Publishing Co. Pte. Ltd..
  • Konferensbidrag (refereegranskat)abstract
    • We present a novel theory of gravity, namely, an extension of symmetric teleparallel gravity. This is done by introducing a new class of theories where the nonmetricity Q is coupled nonminimally to the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. We also present several cosmological applications. 
  •  
9.
  • Rowland, L, et al. (författare)
  • After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:12, s. 4662-4672
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesise that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2±2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5±3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. This article is protected by copyright. All rights reserved.
  •  
10.
  • Carloni, Sante, et al. (författare)
  • Dynamical system analysis of hybrid metric-Palatini cosmologies
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 92:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The so-called f(X) hybrid metric-Palatini gravity, where X = R + T, with T the stress-energy trace and R the Ricci scalar, presents a unique viable generalization of the f(R) theories within the metric-affine formalism. In this paper, the cosmology of the f(X) theories is studied using the dynamical system approach. The method consists of formulating the propagation equation in terms of suitable (expansion-normalized) variables as an autonomous system. The fixed points of the system then represent exact cosmological solutions described by power law or de Sitter expansion. The formalism is applied to two classes of f(X) models, revealing both standard cosmological fixed points and new accelerating solutions that can be attractors in the phase space. In addition, the fixed point with vanishing expansion rate is considered with special care in order to characterize the stability of Einstein static spaces and bouncing solutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy