SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lombardi Carlo) "

Sökning: WFRF:(Lombardi Carlo)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zimarino, Marco, et al. (författare)
  • Left ventricular size predicts clinical benefit after percutaneous mitral valve repair for secondary mitral regurgitation : A systematic review and meta-regression analysis
  • 2020
  • Ingår i: Cardiovascular Revascularization Medicine. - : Elsevier BV. - 1553-8389. ; 21:7, s. 857-864
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The benefit of percutaneous mitral valve repair (PMVR) in patients with secondary MR is still debated. We aimed to compare the outcome of PMVR with optimal medical therapy (OMT) versus OMT alone in patients with secondary mitral regurgitation (MR) and to assess the role of potential effect modifiers. Methods: We performed a systematic review and meta-analysis of 2 randomized clinical trials (RCT) and 7 non-randomized observational studies (nROS). Hazard ratios (HR) and 95% confidence intervals (CI) were pooled through inverse variance random-effects model to compute the summary effect size for all-cause death, cardiovascular death and cardiac-related hospitalization. Subgroup and meta-regression analysis were also performed. Results: An overall population of 3118 individuals (67% men; mean age, 73 years) was included: 1775 PMVR+OMT and 1343 OMT patients, with mean follow-up of 24 ± 15 months. PMVR+OMT was associated with a lower risk of all-cause death (HR: 0.77; 95% CI: 0.68–0.87), cardiovascular death (HR: 0.55; 95% CI: 0.34–0.89) and cardiac-related hospitalization (HR:0.77; 95% CI: 0.64–0.92). Meta-regression analysis showed that larger left ventricular end-diastolic volume index (LVEDVI) portends higher risk of all-cause death, cardiovascular death and cardiac-related hospitalization after PMVR (p < 0.001 for all). Conclusions: This study-level meta-analysis shows that PMVR+OMT is associated with reduced all-cause death, cardiovascular death and cardiac-related hospitalization when compared with OMT alone in secondary MR. LVEDVI is a predictive marker of efficacy, as patients with smaller LVEDVI have been shown to derive the largest benefit from PMVR.
  •  
2.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
3.
  • Lombardi, Vittoria, et al. (författare)
  • Plasma pNfH levels differentiate SBMA from ALS.
  • 2020
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 91:2, s. 215-7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Ragazzola, Federica, et al. (författare)
  • An intertidal life : Combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community
  • 2021
  • Ingår i: Marine Environmental Research. - : Elsevier. - 0141-1136 .- 1879-0291. ; 169
  • Tidskriftsartikel (refereegranskat)abstract
    • In coastal marine ecosystems coralline algae often create biogenic reefs. These calcareous algal reefs affect their associated invertebrate communities via diurnal oscillations in photosynthesis, respiration and calcification processes. Little is known about how these biogenic reefs function and how they will be affected by climate change. We investigated the winter response of a Mediterranean intertidal biogenic reef, Ellissolandia elongata exposed in the laboratory to reduced pH conditions (i.e. ambient pH – 0.3, RCP 8.5) together with an extreme heatwave event (+1.4 °C for 15 days). Response variables considered both the algal physiology (calcification and photosynthetic rates) and community structure of the associated invertebrates (at taxonomic and functional level). The combination of a reduced pH with a heatwave event caused Ellisolandia elongata to significantly increase photosynthetic activity. The high variability of calcification that occurred during simulated night time conditions, indicates that there is not a simple, linear relationship between these two and may indicate that it will be resilient to future conditions of climate change.In contrast, the associated fauna were particularly negatively affected by the heatwave event, which impoverished the communities as opportunistic taxa became dominant. Local increases in oxygen and pH driven by the algae can buffer the microhabitat in the algal fronds, thus favouring the survival of small invertebrates.
  •  
5.
  • Ragazzola, Federica, et al. (författare)
  • Early stage ecological communities on artificial algae showed no difference in diversity and abundance under ocean acidification
  • 2024
  • Ingår i: Hydrobiologia. - : Springer Science+Business Media B.V.. - 0018-8158 .- 1573-5117. ; 851:8, s. 1939-1955
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine habitat-forming species create structurally complex habitats that host macroinvertebrate communities characterized by remarkable abundance and species richness. These habitat-forming species also play a fundamental role in creating favourable environmental conditions that promote biodiversity. The deployment of artificial structures is becoming a common practice to help offset habitat loss although with mixed results. This study investigated the suitability of artificial flexible turfs mimicking the articulated coralline algae (mimics) as habitat providers and the effect of ocean acidification (OA) on early stage ecological communities associated to flexible mimics and with the mature community associated to Ellisolandia elongata natural turfs. The mimics proved to be a suitable habitat for early stage communities. During the OA mesocosms experiment, the two substrates have been treated and analysed separately due to the difference between the two communities. For early stage ecological communities associated with the mimics, the lack of a biologically active substrate does not exacerbate the effect of OA. In fact, no significant differences were found between treatments in crustaceans, molluscs and polychaetes diversity and abundance associated with the mimics. In mature communities associated with natural turfs, buffering capability of E. elongata is supporting different taxonomic groups, except for molluscs, greatly susceptible to OA.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Neven, Patrick (1)
Zetterberg, Henrik, ... (1)
Yang, Sheng (1)
Karlsson, Per, 1963 (1)
Morandi, Vittorio (1)
Lipsanen, Harri (1)
visa fler...
Botas, Cristina (1)
Carriazo, Daniel (1)
Rojo, Teofilo (1)
Ricci, Fabrizio (1)
Beyer, André (1)
Heslegrave, Amanda J (1)
Claps, Gerardo (1)
De Caterina, Raffael ... (1)
Palermo, Vincenzo, 1 ... (1)
Parthenios, John (1)
Papagelis, Konstanti ... (1)
Marzari, Nicola (1)
McManus, John (1)
Gallina, Sabina (1)
Zimarino, Marco (1)
Coletti, Camilla (1)
Pavesi, Lorenzo (1)
Greensmith, Linda (1)
Banszerus, Luca (1)
Stampfer, Christoph (1)
Backes, Claudia (1)
Bianco, Alberto (1)
Ferrari, Andrea C. (1)
Melucci, Manuela (1)
Prato, Maurizio (1)
Xia, Zhenyuan, 1983 (1)
Abdelkader, Amr M. (1)
Alonso, Concepcion (1)
Andrieux-Ledier, Ama ... (1)
Arenal, Raul (1)
Azpeitia, Jon (1)
Balakrishnan, Nilant ... (1)
Barjon, Julien (1)
Bartali, Ruben (1)
Bellani, Sebastiano (1)
Berger, Claire (1)
Berger, Reinhard (1)
Ortega, M. M. Bernal (1)
Bernard, Carlo (1)
Beton, Peter H. (1)
Boggild, Peter (1)
Bonaccorso, Francesc ... (1)
Barin, Gabriela Bori ... (1)
Bueno, Rebeca A. (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Umeå universitet (2)
Linköpings universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)
Medicin och hälsovetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy