SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lord Edana) srt2:(2022)"

Sökning: WFRF:(Lord Edana) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kutschera, Verena E., et al. (författare)
  • GenErode : a bioinformatics pipeline to investigate genome erosion in endangered and extinct species
  • 2022
  • Ingår i: BMC Bioinformatics. - : Springer Nature. - 1471-2105. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Many wild species have suffered drastic population size declines over the past centuries, which have led to 'genomic erosion' processes characterized by reduced genetic diversity, increased inbreeding, and accumulation of harmful mutations. Yet, genomic erosion estimates of modern-day populations often lack concordance with dwindling population sizes and conservation status of threatened species. One way to directly quantify the genomic consequences of population declines is to compare genome-wide data from pre-decline museum samples and modern samples. However, doing so requires computational data processing and analysis tools specifically adapted to comparative analyses of degraded, ancient or historical, DNA data with modern DNA data as well as personnel trained to perform such analyses. Results: Here, we present a highly flexible, scalable, and modular pipeline to compare patterns of genomic erosion using samples from disparate time periods. The GenErode pipeline uses state-of-the-art bioinformatics tools to simultaneously process whole-genome re-sequencing data from ancient/historical and modern samples, and to produce comparable estimates of several genomic erosion indices. No programming knowledge is required to run the pipeline and all bioinformatic steps are well-documented, making the pipeline accessible to users with different backgrounds. GenErode is written in Snakemake and Python3 and uses Conda and Singularity containers to achieve reproducibility on high-performance compute clusters. The source code is freely available on GitHub (https://github.com/NBISweden/GenErode). Conclusions: GenErode is a user-friendly and reproducible pipeline that enables the standardization of genomic erosion indices from temporally sampled whole genome re-sequencing data.
  •  
2.
  • Lord, Edana, 1993- (författare)
  • Investigating the impacts of Late Pleistocene climate change on Arctic mammals using palaeogenomics
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The climatic fluctuations of the Late Pleistocene likely had a large impact on the evolutionary history of Arctic species. Palaeogenomics is a useful tool to shed light on how past populations responded to these climatic shifts and the associated ice sheet dynamics and sea level change. Here, I have used modern and ancient DNA data from four Arctic mammals in order to investigate the impacts of Late Pleistocene climate on their evolutionary histories, from population dynamics and demography, to speciation and gene flow, adaptation, and genome erosion. In Paper I, using ancient mitogenomes from across their Late Pleistocene range, I showed that the Eurasian collared lemming (Dicrostonyx torquatus) had a dynamic Late Pleistocene population structure in Europe. Furthermore, the Eemian interglacial likely led to a bottleneck in collared lemmings, after which the species diversified during the Last Glacial period. Nuclear genome data from a modern individual in northeastern Siberia suggests population stability in northeastern Siberia during the Holocene. In Paper II, I sequenced the nuclear genome of a ~18,500 year old woolly rhinoceros (Coelodonta antiquitatis) and used this in combination with mitochondrial data to explore the demographic history of the species. There was little geographic structuring in the northeast Siberian population, and stability in their effective population size just prior to extinction, which may indicate a subsequent rapid decline towards extinction, likely associated with the Bølling-Allerød interstadial. Additionally, I found that this species had mutations in TRPA1, a gene involved in temperature sensitivity. In a third study (Paper III), I used whole genome data from modern and ancient true lemmings (Lemmus sp.) to determine that the Norwegian lemming (L. lemmus) has one of the youngest speciation times (~37-34 ka BP) of mammals. Norwegian lemmings have mutations in genes involved in coat colour, colour perception, fat transport and reproduction, and likely evolved their unique colouration as a result of isolation after the recolonisation of Fennoscandia. Finally, we examined the consequences of long-term small effective population size in muskox (Ovibos moschatus) using 107 modern nuclear genomes and one 21,000 year old Siberian genome (Paper IV). While muskox survived the warming at the end of the Late Pleistocene, the successive founder events experienced during its colonisation of the Canadian Arctic and Greenland reduced the genetic diversity to some of the lowest values observed in mammals. However, the results suggest that the long-term small population size likely led to purging of strongly deleterious alleles in the muskox, allowing them to persist to today with limited evidence of inbreeding depression. From a technical point, this thesis presents four de-novo genome assemblies, and the first whole nuclear genomes for these Arctic species. Taken together, the results in this thesis show that the climatic fluctuations, in particular the Eemian interglacial and Bølling-Allerød interstadial, along with sea level change and the formation and retreat of ice sheets during the Last Glacial Maximum have influenced the evolutionary histories of these four Arctic mammals.
  •  
3.
  • Lord, Edana, et al. (författare)
  • Population dynamics and demographic history of Eurasian collared lemmings
  • 2022
  • Ingår i: BMC Ecology and Evolution. - : Springer Science and Business Media LLC. - 2730-7182. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Ancient DNA studies suggest that Late Pleistocene climatic changes had a significant effect on population dynamics in Arctic species. The Eurasian collared lemming (Dicrostonyx torquatus) is a keystone species in the Arctic ecosystem. Earlier studies have indicated that past climatic fluctuations were important drivers of past population dynamics in this species.Results: Here, we analysed 59 ancient and 54 modern mitogenomes from across Eurasia, along with one modern nuclear genome. Our results suggest population growth and genetic diversification during the early Late Pleistocene, implying that collared lemmings may have experienced a genetic bottleneck during the warm Eemian interglacial. Furthermore, we find multiple temporally structured mitogenome clades during the Late Pleistocene, consistent with earlier results suggesting a dynamic late glacial population history. Finally, we identify a population in northeastern Siberia that maintained genetic diversity and a constant population size at the end of the Pleistocene, suggesting suitable conditions for collared lemmings in this region during the increasing temperatures associated with the onset of the Holocene.Conclusions: This study highlights an influence of past warming, in particular the Eemian interglacial, on the evolutionary history of the collared lemming, along with spatiotemporal population structuring throughout the Late Pleistocene.
  •  
4.
  • von Seth, Johanna, et al. (författare)
  • Genomic trajectories of a near-extinction event in the Chatham Island black robin
  • 2022
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 23
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Understanding the micro-­evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation.Results: We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations.Conclusion: Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy