SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lorek Eleonora) srt2:(2015)"

Sökning: WFRF:(Lorek Eleonora) > (2015)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lorek, Eleonora, et al. (författare)
  • High-Order Harmonic Generation and Plasmonics
  • 2015
  • Ingår i: Nano-Structures for Optics and Photonics : Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion - Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion. - Dordrecht : Springer Netherlands. - 9789401791328 - 9789401791335 ; , s. 531-531
  • Bokkapitel (refereegranskat)abstract
    • Attosecond pulses allow for imaging of very fast processes, like electron dynamics. Stockman et al. suggested to use these pulses in connection with a Photoemission electron microscope (PEEM) to study the ultrafast dynamics of plasmons (Stockman et al. Nat Photonics 1:539–544, 2007). For efficient plasmon studies, the repetition rate of the attosecond pulses used needs to be higher than a few kHz (Mikkelsen et al. Rev Sci Instrum 80:123703, 2009). Attosecond pulses are produced in a process called high-order harmonic generation (HHG) (Paul et al. Science 292(5522):1689–1692, 2001; Ferray et al. J Phys B At Mol Opt Phys 21:L31–L35, 1988). In HHG, a strong laser field allows an electron to tunnel out, get accelerated and recombine with a high kinetic energy resulting in extreme ultraviolet attosecond pulses. The large intensity needed to drive the process normally limits the repetition rate of the laser to a few kHz. Using a tight focusing scheme (Heyl et al. Phys Rev Lett 107:033903, 2011; Vernaleken et al. Opt Lett 36:3428–3430, 2011), we, however, generate harmonics at a repetition rate of 200 kHz, both with a commercial turn-key laser and with an advanced laser system. Suitable nanostructures for a strong field enhancement are produced in-house and the field enhancement is studied with PEEM in a non-time resolved manner. With high-order harmonics produced at a high repetition rate, we hope to be able to follow also the ultrafast dynamics of plasmons in these structures (Mårsell et al. Ann der Phys 525:162–170, 2013).
  •  
3.
  • Lorek, Eleonora, et al. (författare)
  • Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas
  • 2015
  • Ingår i: Optics Express. - 1094-4087. ; 23:24, s. 31460-31471
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal nanostructures can transfer electromagnetic energy from femtosecond laser pulses to the near-field down to spatial scales well below the optical diffraction limit. By combining few-femtosecond laser pulses with photoemission electron microscopy, we study the dynamics of the induced few-cycle near-field in individual bowtie nanoantennas. We investigate how the dynamics depend on antenna size and exact bowtie shape resulting from fabrication. Different dynamics are, as expected, measured for antennas of different sizes. However, we also detect comparable dynamics differences between individual antennas of similar size. With Finite-difference time-domain simulations we show that these dynamics differences between similarly sized antennas can be due to small lateral shape variations generally induced during the fabrication.
  •  
4.
  • Mårsell, Erik, et al. (författare)
  • Direct subwavelength imaging and control of near-field localization in individual silver nanocubes
  • 2015
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 107:20
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the control of near-field localization within individual silver nanocubes through photoemission electron microscopy combined with broadband, few-cycle laser pulses. We find that the near-field is concentrated at the corners of the cubes, and that it can be efficiently localized to different individual corners depending on the polarization of the incoming light. The experimental results are confirmed by finite-difference time-domain simulations, which also provide an intuitive picture of polarization dependent near-field localization in nanocubes. (C) 2015 AIP Publishing LLC.
  •  
5.
  • Mårsell, Erik, et al. (författare)
  • Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna.
  • 2015
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 15:10, s. 6601-6608
  • Tidskriftsartikel (refereegranskat)abstract
    • The local enhancement of few-cycle laser pulses by plasmonic nanostructures opens up for spatiotemporal control of optical interactions on a nanometer and few-femtosecond scale. However, spatially resolved characterization of few-cycle plasmon dynamics poses a major challenge due to the extreme length and time scales involved. In this letter, we experimentally demonstrate local variations in the dynamics during the few strongest cycles of plasmon-enhanced fields within individual rice-shaped silver nanoparticles. This was done using 5.5 fs laser pulses in an interferometric time-resolved photoemission electron microscopy setup. The experiments are supported by finite-difference time-domain simulations of similar silver structures. The observed differences in the field dynamics across a single particle do not reflect differences in plasmon resonance frequency or dephasing time. They instead arise from a combination of retardation effects and the coherent superposition between multiple plasmon modes of the particle, inherent to a few-cycle pulse excitation. The ability to detect and predict local variations in the few-femtosecond time evolution of multi-mode coherent plasmon excitations in rationally synthesized nanoparticles can be used in the tailoring of nanostructures for ultrafast and nonlinear plasmonics.
  •  
6.
  • Rudawski, Piotr, et al. (författare)
  • Carrier-envelope phase dependent high-order harmonic generation with a high-repetition rate OPCPA-system
  • 2015
  • Ingår i: European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics. - : Springer Science and Business Media LLC. - 1434-6060. ; 69:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We study high-order harmonic generation with a high-repetition rate (200 kHz), few-cycle, driving laser, based on optical parametric chirped pulse amplification. The system delivers carrier-envelope phase stable, 8 fs, 10 mu J pulses at a central wavelength of 890 nm. High-order harmonics, generated in a high-pressure Ar gas jet, exhibit a strong CEP-dependence over a large spectral range owing to excellent stability of the driving laser pulses. This range can be divided into three spectral regions with distinct CEP influence. The observed spectral interference structures are explained by an analytical model based upon multiple pulse interferences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy