SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lorentzen Erik 1974) srt2:(2019)"

Sökning: WFRF:(Lorentzen Erik 1974) > (2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caidahl, Kenneth, 1949, et al. (författare)
  • Homeostatic Chemokines and Prognosisin Patients With Acute Coronary Syndromes.
  • 2019
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 1558-3597 .- 0735-1097. ; 74:6, s. 774-782
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemokines CCL19 and CCL21 are up-regulated in atherosclerotic disease and heart failure, and increased circulating levels are found in unstable versus stable coronary artery disease.The purpose of this study was to evaluate the prognostic value of CCL19 and CCL21 in acute coronary syndrome (ACS).CCL19 and CCL21 levels were analyzed in serum obtained from ACS patients (n=1,146) on the first morning after hospital admission. Adjustments were made for GRACE (Global Registry of Acute Coronary Events) score, left ventricular ejection fraction, pro-B-type natriuretic peptide, troponin I, and C-reactive protein levels.The major findings were: 1) those having fourth quartile levels of CCL21 on admission of ACS had a significantly higher long-term (median 98months) risk of major adverse cardiovascular events (MACE) and myocardial infarction in fully adjusted multivariable models; 2) high CCL21 levels at admission were also independently associated with MACE and cardiovascular mortality during short-time (3months) follow-up; and 3) high CCL19 levels at admission were associated with the development of heart failure.CCL21 levels are independently associated with outcome after ACS and should be further investigated as a promising biomarker in these patients.
  •  
2.
  • Gill, D., et al. (författare)
  • Genetically Determined Risk of Depression and Functional Outcome After Ischemic Stroke: Mendelian Randomization Study
  • 2019
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 50:8, s. 2219-2222
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose- Psychosocial factors can have implications for ischemic stroke risk and recovery. This study investigated the effect of genetically determined risk of depression on these outcomes using the Mendelian randomization (MR) framework. Methods- Genetic instruments for risk of depression were identified in a discovery genome-wide association study of 246363 cases and 561190 controls and further replicated in a separate population of 474574 cases and 1032579 controls. Corresponding genetic association estimates for risk of ischemic stroke were taken from 60341 cases and 454450 controls, with those for functional outcome 3 months after ischemic stroke taken from an analysis of 6021 patients. Following statistical power calculation, inverse-variance weighted MR was performed to pool estimates across different instruments. The Cochran Q heterogeneity test, weighted median MR, and MR pleiotropy residual sum and outlier were used to explore possible bias relating to inclusion of pleiotropic variants. Results- There was no MR evidence for an effect of genetically determined risk of depression on ischemic stroke risk. Although suffering low statistical power, the main inverse-variance weighted MR analysis was suggestive of a detrimental effect of genetically determined risk of depression on functional outcome after ischemic stroke (odds ratio of poor outcome [modified Rankin Scale, >= 3] per 1-SD increase in genetically determined risk of depression, 1.81; 95% CI, 0.98-3.35; P=0.06). There was no evidence of heterogeneity between MR estimates produced by different instruments (Q P=0.26). Comparable MR estimates were obtained with weighted median MR (odds ratio, 2.57; 95% CI, 1.05-6.25; P=0.04) and MR pleiotropy residual sum and outlier (odds ratio, 1.81; 95% CI, 0.95-3.46; P=0.08). Conclusions- We found no MR evidence of genetically determined risk of depression affecting ischemic stroke risk but did find consistent MR evidence suggestive of a possible effect on functional outcome after ischemic stroke. Given the widespread prevalence of depression-related morbidity, these findings could have implications for prognostication and personalized rehabilitation after stroke.
  •  
3.
  • Lagging, Cecilia, et al. (författare)
  • APOE ε4 is associated with younger age at ischemic stroke onset but not with stroke outcome
  • 2019
  • Ingår i: Neurology. - 1526-632X. ; 93:19, s. 849-853
  • Tidskriftsartikel (refereegranskat)abstract
    • Stroke outcome is determined by a complex interplay, where age and stroke severity are predominant predictors. Studies on hemorrhagic stroke indicate that APOE genotype is a predictor of poststroke outcomes,1,2 but results from studies on ischemic stroke are more conflicting.1,3 There is 1 study suggesting an influence of APOE genotype on age at ischemic stroke onset,4 and sex-specific effects on outcome have been reported.5 Taken together, there is a need for larger studies on APOE and ischemic stroke outcomes with integrated information on age, severity, and sex.The 3 common APOE alleles ε2, ε3, and ε4 can be separated by a combination of 2 single nucleotide polymorphisms (SNPs), rs429358 and rs7412. Thus, associations with APOE alleles are not directly captured in a regular genome-wide association study (GWAS), where each SNP is investigated separately. We derived the 3 common APOE alleles and investigated the interplay between APOE, age at ischemic stroke onset, severity, sex, and outcome within a large international collaboration, the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network.
  •  
4.
  • Mola-Caminal, M., et al. (författare)
  • PATJ Low Frequency Variants Are Associated With Worse Ischemic Stroke Functional Outcome A Genome-Wide Meta-Analysis
  • 2019
  • Ingår i: Circulation research. - : Ovid Technologies (Wolters Kluwer Health). - 0009-7330 .- 1524-4571. ; 124:1, s. 114-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Ischemic stroke is among the leading causes of adult disability. Part of the variability in functional outcome after stroke has been attributed to genetic factors but no locus has been consistently associated with stroke outcome. Objective: Our aim was to identify genetic loci influencing the recovery process using accurate phenotyping to produce the largest GWAS (genome-wide association study) in ischemic stroke recovery to date. Methods and Results: A 12-cohort, 2-phase (discovery-replication and joint) meta-analysis of GWAS included anterior-territory and previously independent ischemic stroke cases. Functional outcome was recorded using 3-month modified Rankin Scale. Analyses were adjusted for confounders such as discharge National Institutes of Health Stroke Scale. A gene-based burden test was performed. The discovery phase (n=1225) was followed by open (n=2482) and stringent joint-analyses (n=1791). Those cohorts with modified Rankin Scale recorded at time points other than 3-month or incomplete data on previous functional status were excluded in the stringent analyses. Novel variants in PATJ (Pals1-associated tight junction) gene were associated with worse functional outcome at 3-month after stroke. The top variant was rs76221407 (G allele, beta=0.40, P=1.70x10-9). Conclusions: Our results identify a set of common variants in PATJ gene associated with 3-month functional outcome at genome-wide significance level. Future studies should examine the role of PATJ in stroke recovery and consider stringent phenotyping to enrich the information captured to unveil additional stroke outcome loci.
  •  
5.
  • Soderholm, M., et al. (författare)
  • Genome-wide association meta-analysis of functional outcome after ischemic stroke
  • 2019
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To discover common genetic variants associated with poststroke outcomes using a genome-wide association (GWA) study. Methods The study comprised 6,165 patients with ischemic stroke from 12 studies in Europe, the United States, and Australia included in the GISCOME (Genetics of Ischaemic Stroke Functional Outcome) network. The primary outcome was modified Rankin Scale score after 60 to 190 days, evaluated as 2 dichotomous variables (0-2 vs 3-6 and 0-1 vs 2-6) and subsequently as an ordinal variable. GWA analyses were performed in each study independently and results were meta-analyzed. Analyses were adjusted for age, sex, stroke severity (baseline NIH Stroke Scale score), and ancestry. The significance level was p < 5 x 10(-8). Results We identified one genetic variant associated with functional outcome with genome-wide significance (modified Rankin Scale scores 0-2 vs 3-6, p = 5.3 x 10(-9)). This intronic variant (rs1842681) in the LOC105372028 gene is a previously reported trans-expression quantitative trait locus for PPP1R21, which encodes a regulatory subunit of protein phosphatase 1. This ubiquitous phosphatase is implicated in brain functions such as brain plasticity. Several variants detected in this study demonstrated suggestive association with outcome (p < 10(-5)), some of which are within or near genes with experimental evidence of influence on ischemic stroke volume and/or brain recovery (e.g., NTN4, TEK, and PTCH1). Conclusions In this large GWA study on functional outcome after ischemic stroke, we report one significant variant and several variants with suggestive association to outcome 3 months after stroke onset with plausible mechanistic links to poststroke recovery. Future replication studies and exploration of potential functional mechanisms for identified genetic variants are warranted.
  •  
6.
  • Wu, O., et al. (författare)
  • Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
  • 2019
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 50:7, s. 1734-1741
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (rho=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm(3) (0.9-16.6 cm(3)). Patients with small artery occlusion stroke subtype had smaller lesion volumes (P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy