SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Los Marek Jan) srt2:(2000-2004)"

Sökning: WFRF:(Los Marek Jan) > (2000-2004)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Baust, H., et al. (författare)
  • Evidence for radiosensitizing by gliotoxin in HL-60 cells : implications for a role of NF-kappa B independent mechanisms
  • 2003
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 22:54, s. 8786-8796
  • Tidskriftsartikel (refereegranskat)abstract
    • Radioresistance markedly impairs the efficacy of tumor radiotherapy and may involve antiapoptotic signal transduction pathways that prevent radiation-induced cell death. A common cellular response to genotoxic stress induced by radiation is the activation of the nuclear factor kappa B (NF-kappaB). NF-kappaB activation in turn can lead to an inhibition of radiation-induced apoptotic cell death. Thus, inhibition of NF-kappaB activation is commonly regarded as an important strategy to abolish radioresistance. Among other compounds, the fungal metabolite gliotoxin (GT) has been reported to be a highly selective inhibitor of NF-kappaB activation. Indeed, low doses of GT were sufficient to significantly enhance radiation-induced apoptosis in HL-60 cells. However, this effect turned out to be largely independent of NF-kappaB activation since radiation of HL-60 cells with clinically relevant doses of radiation induced only a marginal increase in NF-kappaB activity, and selective inhibition of NF-kappaB by SN50 did not result in a marked enhancement of GT-induced apoptosis. GT induced activation of JNKs, cytochrome c release from the mitochondria and potently stimulated the caspase cascade inducing cleavage of caspases -9, -8, -7 and -3. Furthermore, cleavage of the antiapoptotic protein X-linked IAP and downregulation of the G2/M-specific IAP-family member survivin were observed during GT-induced apoptosis. Finally, the radiation-induced G2/M arrest was markedly reduced in GT-treated cells most likely due to the rapid induction of apoptosis. Our data demonstrate that various other pathways apart from the NF-kappaB signaling complex can sensitize tumor cells to radiation and propose a novel mechanism for radio-sensitization by GT, the interference with the G2/M checkpoint that is important for repair of radiation-induced DNA damage in p53-deficient tumor cells.
  •  
3.
  • Burek, C. J., et al. (författare)
  • The role of ceramide in receptor- and stress-induced apoptosis studied in acidic ceramidase-deficient Farber disease cells
  • 2001
  • Ingår i: Oncogene. - : Nature Publishing Group. - 0950-9232 .- 1476-5594. ; 20:45, s. 6493-6502
  • Tidskriftsartikel (refereegranskat)abstract
    • The activation of sphingomyelinases leading to the generation of ceramide has been implicated in various apoptotic pathways. However, the role of ceramide as an essential death mediator remains highly controversial. In the present study, we investigated the functional relevance of ceramide in a genetic model by using primary cells from a Farber disease patient. These cells accumulate ceramide as the result of an inherited deficiency of acidic ceramidase. We demonstrate that Farber disease lymphocytes and fibroblasts underwent apoptosis induced by various stress stimuli, including staurosporine, anticancer drugs and gamma -irradiation, equally as normal control cells. In addition, caspase activation by these proapoptotic agents occurred rather similarly in Farber disease and control fibroblasts. Interestingly, Farber disease lymphoid cells underwent apoptosis induced by the CD95 death receptor more rapidly than control cells. Our data therefore suggest that ceramide does not play an essential role as a second messenger in stress-induced apoptosis. However, in accordance with a role in lipid-rich microdomains, ceramide by altering membrane composition may function as an amplifier in CD95-mediated apoptosis.
  •  
4.
  • Cassens, U., et al. (författare)
  • Viral modulation of cell death by inhibition of caspases
  • 2003
  • Ingår i: Archivum Immunologiae et Therapiae Experimentalis. - 0004-069X .- 1661-4917. ; 51:1, s. 19-27
  • Forskningsöversikt (refereegranskat)abstract
    • Caspases are key effectors of the apoptotic process. Some of them play important roles in the immune system, being involved in the proteolytic maturation of the key cytokines, including interleukin 1beta (IL-1beta) and IL-18. The latter directs the production of interferon gamma (IFN-gamma). Among pathogens, particularly viruses express various modulators of caspases that inhibit their activity by direct binding. By evading the apoptotic process, viruses can better control their production in the infected cell and avoid the attack of the immune system. Targeting the maturation of the key cytokines involved in the initiation of (antiviral) immune response helps to avoid recognition and eradication by the immune system. The three main classes of caspase inhibitors frequently found among viruses include serine proteinase inhibitors (serpins: CrmA/SPI-2), viral IAPs (vIAPs) and p35. Their molecular mechanisms of action, structures and overall influence on cellular physiology are discussed in the review below.
  •  
5.
  • Chlichlia, K., et al. (författare)
  • Redox events in HTLV-1 tax-induced apoptotic T-cell death
  • 2002
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert, Inc. publishers. - 1523-0864 .- 1557-7716. ; 4:3, s. 471-477
  • Tidskriftsartikel (refereegranskat)abstract
    • A number of studies implicate reactive oxygen intermediates in the induction of DNA damage and apoptosis. Recent studies suggest that the human T-cell leukemia virus type I (HTLV-1) Tax protein induces oxidative stress and apoptotic T-cell death. Activation of the T-cell receptor/CD3 pathway enhances the Tax-mediated oxidative and apoptotic effects. Tax-mediated apoptosis and oxidative stress as well as activation of nuclear factor-kappaB can be potently suppressed by antioxidants. This review focuses on Tax-dependent changes in the intracellular redox status and their role in Tax-mediated DNA damage and apoptosis. The relevance of these observations to HTLV-1 virus-mediated T-cell transformation and leukemogenesis are discussed.
  •  
6.
  • Ghavami, Saeid, et al. (författare)
  • Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines : the role of ROS and the effect of metal ions
  • 2004
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 0741-5400 .- 1938-3673. ; 76:1, s. 169-175
  • Tidskriftsartikel (refereegranskat)abstract
    • The protein complex S100A8/A9, abundant in the cytosol of neutrophils, is secreted from the cells upon cellular activation and induces apoptosis in tumor cell lines and normal fibroblasts in a zinc-reversible manner. In the present study, we present evidence that the S100A8/A9 also exerts its apoptotic effect by a zinc-independent mechanism. Treatment of the colon carcinoma cells with different concentrations of human SI00A8/A9 or the metal ion chelator diethylenetriaminepentacetic acid (DTPA) resulted in a significant increase of cell death. Annexin V/phosphatidylinositol and Hoechst 33258 staining revealed that cell death was mainly of the apoptotic type. A significant increase in the activity of caspase-3 and -9 was observed in both cell lines after treatment. Caspase-8 activation was negligible in both cell lines. The cytotoxicity/apoptotic effect of human SI00A8/A9 and DTPA was inhibited significantly 2 2 (P<0.05) by Zn+2 and Cu+2, more effectively than by Ca2+ and Mg2+. The antioxidant N-acetyl-L-cysteine inhibited the cytotoxicity/apoptotic effect of SI00A8/A9 and DTPA. However, as a result of the different time-courses of both agents and that the S100A8/A9-induced apoptosis was not completely reversed, we conclude that S100A8/A9 exerts its apoptotic effect on two colon carcinoma cell lines through a dual mechanism: one via zinc exclusion from the target cells and the other through a yet-undefined mechanism, probably relaying on the cell-surface receptor(s).
  •  
7.
  • Johar, Dina, et al. (författare)
  • Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer
  • 2004
  • Ingår i: Roczniki Akademii Medycznej w Bialymstoku (1995). ; 49, s. 31-39
  • Forskningsöversikt (refereegranskat)abstract
    • In this short review we attempt to establish and/or strengthen connections between clinical, inflammatory manifestation of cancer, inflammatory processes driven by lipoxy-metabolites and their contribution to immortalized phenotype and apoptosis inhibition. Particularly the resemblance between symptoms of inflammation and signs associated with cancer chemotherapy and/or cytokine therapy is illustrated. In this context the role of apoptosis and necrosis in inflammation as well as the role of RedOx processes and lipid-oxidizing enzymes particularly cyclooxygenase-2 (COX-2) and also to lesser extend the 5-lipooxygenase (5-LOX) is highlighted. The multitude of biological effects of reactive oxygen species is shortly summarized and some aspects of it are being discussed in greater detail. Apoptotic cell death is discussed in the context of the "resolve-phase" of an inflammatory response. The disturbance of apoptosis is mainly deliberated in the framework of insufficient removal of immuno-effector cells that may cause autoimmunity. The role of COX-2 in apoptosis resistance is being highlighted mainly in the context of malignant transformation. The mechanism of cell death (apoptotic or necrotic) and its influence on the immune system and potential benefits of necrotic cell death induction during cancer chemotherapy is indicated.
  •  
8.
  • Kreuter, M., et al. (författare)
  • Stroke, myocardial infarction, acute and chronic inflammatory diseases : caspases and other apoptotic molecules as targets for drug development
  • 2004
  • Ingår i: Archivum Immunologiae et Therapiae Experimentalis. - 0004-069X .- 1661-4917. ; 52:3, s. 141-155
  • Forskningsöversikt (refereegranskat)abstract
    • Mapping of the human and other eukaryotic genomes has provided the pharmacological industry with excellent models For drug discovery. Control of cell proliferation, differentiation, activation and cell removal is crucial for the development and existence of multicellular organisms. Each cell cycle progression, with sequences of DNA replication, mitosis, and cell division, is a tightly controlled and complicated process that, 1 when deregulated, may become dangerous not only to a single cell, but also to the whole organism. Regulation and the proper control of the cell cycle and of programmed cell death (apoptosis) is therefore essential for mammalian development and the homeostasis of the immune system. The molecular networks that regulate these processes are critical targets for drug development, gene therapy, and metabolic engineering. In addition to the primary, intracellular apoptotic suicide machinery, components of the immune system can detect and remove cells and tissue fragments that no longer serve their defined functions. In this review we will focus on apoptotic pathways converging on caspase family proteases, summarizing pharmacological attempts that target genes, proteins, and intermolecular interactions capable of modulating apoptosis and the inflammatory response. The upcoming pharmacological development for treatment of acute pathologies, such as sepsis, SIRS, stroke, traumatic brain injury, myocardial infarction, spinal cord injury, acute liver failure, as well as chronic disorders Such as Huntington's disease, Parkinson's disease, ALS, and rheumatoid arthritis, will be discussed in details. We also suggest new potential molecular targets that may prove to be effective in controlling apoptosis and the immune response in vivo.
  •  
9.
  • Los, Marek Jan, et al. (författare)
  • Activation and caspase-mediated inhibition of PARP : A molecular switch between fibroblast necrosis and apoptosis in death receptor signaling
  • 2002
  • Ingår i: Molecular Biology of the Cell. - : American Society for Cell Biology. - 1059-1524 .- 1939-4586. ; 13:3, s. 978-988
  • Tidskriftsartikel (refereegranskat)abstract
    • Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-I mutant were more sensitive to TNF than wild-tvpe cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.
  •  
10.
  • Los, Marek Jan, et al. (författare)
  • Anticancer drugs of tomorrow : apoptotic pathways as targets for drug design
  • 2003
  • Ingår i: Drug Discovery Today. - : Elsevier. - 1359-6446 .- 1878-5832. ; 8:2, s. 67-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis or programmed cell death is a set of ordered events that enables the selective removal of cells from tissue and is essential for homeostasis and proper function of multicellular organisms. Components of this signaling network, which include ligands, such as CD95, tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand, as well as downstream molecules, such as caspases, Bcl-2 family members, and inhibitor-of-apoptosis proteins, which trigger and regulate apoptosis, are crucial targets for conventional drug development and gene therapy of cancer and other diseases. Here, we focus on apoptotic pathways and propose new potential molecular targets that could prove effective in controlling cell death in the clinical setting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy