SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lucht M) srt2:(2015-2019)"

Sökning: WFRF:(Lucht M) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Boysen, Lena R., et al. (författare)
  • The limits to global-warming mitigation by terrestrial carbon removal
  • 2017
  • Ingår i: Earth's Future. - 2328-4277. ; 5:5, s. 463-474
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive near-term greenhouse gas emissions reduction is a precondition for staying well below 2 degrees C global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature overshoot in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to repair delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5 degrees C or even 4.5 degrees C above pre-industrial level. Our results show that those tCDR measures are unable to counteract business-as-usual emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of > 50% of natural forests. In addition, > 100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2 degrees C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable supporting actor for strong mitigation if sustainable schemes are established immediately. Plain Language Summary In 2015, parties agreed to limit global warming to well below 2 degrees C above pre-industrial levels. However, this requires not only massive near-term greenhouse gas emissions reductions but also the application of negative emission techniques that extract already emitted carbon dioxide from the atmosphere. Specifically, this could refer to the establishment of extensive plantations of fast-growing tree and grass species in combination with biomass conversion to carbon-saving products. Although such deployment is seen as promising, its carbon sequestration potentials and possible side-effects still remain to be studied in depth. In this study, we analyzed two feasibility aspects of such a negative emissions approach using biomass plantations and carbon utilization pathways. First, we show that biomass plantations with subsequent carbon immobilization are likely unable to repair insufficient emission reduction policies without compromising food production and biosphere functioning due to its space-consuming properties. Second, the requirements for a strong mitigation scenario staying below the 2 degrees C target would require a combination of high irrigation water input and development of highly effective carbon process chains. Although we find that this strategy of sequestering carbon is not a viable alternative to aggressive emission reductions, it could still support mitigation efforts if sustainably managed.
  •  
3.
  • Lucht, Sarah A., et al. (författare)
  • Circulating lipids, mammographic density, and risk of breast cancer in the Nurses’ Health Study and Nurses’ Health Study II
  • 2019
  • Ingår i: Cancer Causes and Control. - : Springer Science and Business Media LLC. - 0957-5243 .- 1573-7225. ; 30:9, s. 943-953
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Epidemiologic evidence supports an association between high mammographic density and increased breast cancer risk yet etiologic mechanisms remain largely unknown. Mixed evidence exists as to whether circulating lipid levels influence mammographic density and breast cancer risk. Therefore, we examined these associations in the Nurses’ Health Study (NHS) and Nurses’ Health Study II (NHSII), two large prospective cohorts with information on PMD and circulating lipid measures, long follow-up, and breast cancer risk factor and outcome data. Methods: We conducted a nested case–control study among women in the NHS and NHSII. Percent mammographic density (PMD) was measured using Cumulus software, a computer-assisted method, on digitized film mammograms. Cross-sectional associations between circulating lipids [total cholesterol (n = 1,502), high-density lipoprotein (HDL-C; n = 579), and triglycerides (n = 655)] and PMD were evaluated among controls. All analyses were stratified by menopausal status at time of mammogram. Relative risks for breast cancer by lipid and PMD measures were estimated among postmenopausal women in the full nested case–control study (cases/controls for cholesterol, HDL-C, and triglycerides were 937/975, 416/449, and 506/537, respectively). Results: There were no significant associations between circulating lipid levels and PMD among healthy women, irrespective of menopausal status. The association between PMD and breast cancer risk among postmenopausal women was not modified by circulating lipid levels (p interaction = 0.83, 0.80, and 0.34 for total cholesterol, HDL-C, and triglycerides, respectively). Conclusion: Overall, no association was observed between lipid levels and PMD, and there was no evidence that lipid levels modified the association between PMD and breast cancer risk.
  •  
4.
  • Schwengel, Katja, et al. (författare)
  • Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice
  • 2016
  • Ingår i: Journal of Molecular Medicine. - : Springer Science and Business Media LLC. - 0946-2716 .- 1432-1440. ; 94:8, s. 957-966
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the effect of post-stroke, direct AT2-receptor (AT2R) stimulation with the non-peptide AT2R-agonist compound 21 (C21) on infarct size, survival and neurological outcome after middle cerebral artery occlusion (MCAO) in mice and looked for potential underlying mechanisms. C57/BL6J or AT2R-knockout mice (AT2-KO) underwent MCAO for 30 min followed by reperfusion. Starting 45 min after MCAO, mice were treated once daily for 4 days with either vehicle or C21 (0.03 mg/kg ip). Neurological deficits were scored daily. Infarct volumes were measured 96 h post-stroke by MRI. C21 significantly improved survival after MCAO when compared to vehicle-treated mice. C21 treatment had no impact on infarct size, but significantly attenuated neurological deficits. Expression of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB) (receptor for BDNF) and growth-associated protein 43 (GAP-43) were significantly increased in the peri-infarct cortex of C21-treated mice when compared to vehicle-treated mice. Furthermore, the number of apoptotic neurons was significantly decreased in the peri-infarct cortex in mice treated with C21 compared to controls. There were no effects of C21 on neurological outcome, infarct size and expression of BDNF or GAP-43 in AT2-KO mice. From these data, it can be concluded that AT2R stimulation attenuates early mortality and neurological deficits after experimental stroke through neuroprotective mechanisms in an AT2R-specific way.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy