SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lucht Wolfgang) srt2:(2020-2024)"

Sökning: WFRF:(Lucht Wolfgang) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Donges, Jonathan F., et al. (författare)
  • Earth system modeling with endogenous and dynamic human societies : the copan
  • 2020
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 11:2, s. 395-413
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the increasing magnitude of processes operating in human societies, their cultures, economies and technosphere and their growing feedback entanglement with those in the physical, chemical and biological systems of the planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models typically do so only with limited scope. This paper (i) proposes design principles for constructing world-Earth models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)-ecological (Earth) coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework for developing, composing and analyzing such WEMs based on the proposed principles. The framework provides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocultural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large diversity of competing theories and methodologies used for describing socio-metabolic or economic and sociocultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially learned environmental awareness could fundamentally change macroscopic model outcomes.
  •  
2.
  • Donges, Jonathan, et al. (författare)
  • Taxonomies for structuring models for World-Earth systems analysis of the Anthropocene : subsystems, their interactions and social-ecological feedback loops
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:4, s. 1115-1137
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Anthropocene, the social dynamics of human societies have become critical to understanding planetary-scale Earth system dynamics. The conceptual foundations of Earth system modelling have externalised social processes in ways that now hinder progress in understanding Earth resilience and informing governance of global environmental change. New approaches to global modelling of the human World are needed to address these challenges. The current modelling landscape is highly diverse and heterogeneous, ranging from purely biophysical Earth system models, to hybrid macro-economic integrated assessments models, to a plethora of models of socio-cultural dynamics. World-Earth models capable of simulating complex and entangled human-Earth system processes of the Anthropocene are currently not available. They will need to draw on and selectively integrate elements from the diverse range of fields and approaches; thus, future World-Earth modellers require a structured approach to identify, classify, select, combine and critique model components from multiple modelling traditions. Here, we develop taxonomies for ordering the multitude of societal and biophysical subsystems and their interactions. We suggest three taxa for modelled subsystems: (i) biophysical, where dynamics is usually represented by natural laws of physics, chemistry or ecology (i.e. the usual components of Earth system models); (ii) socio-cultural, dominated by processes of human behaviour, decision-making and collective social dynamics (e.g. politics, institutions, social networks and even science itself); and (iii) socio-metabolic, dealing with the material interactions of social and biophysical subsystems (e.g. human bodies, natural resources and agriculture). We show how higher-order taxonomies can be derived for classifying and describing the interactions between two or more subsystems. This then allows us to highlight the kinds of social-ecological feedback loops where new modelling efforts need to be directed. As an example, we apply the taxonomy to a stylised World-Earth system model that endogenises the socially transmitted choice of discount rates in a greenhouse gas emissions game to illustrate the effects of social-ecological feedback loops that are usually not considered in current modelling efforts. The proposed taxonomy can contribute to guiding the design and operational development of more comprehensive World-Earth models for understanding Earth resilience and charting sustainability transitions within planetary boundaries and other future trajectories in the Anthropocene.
  •  
3.
  • Drüke, Markus, et al. (författare)
  • The long-term impact of transgressing planetary boundaries on biophysical atmosphere–land interactions
  • 2024
  • Ingår i: Earth System Dynamics. - 2190-4979 .- 2190-4987. ; 15:2, s. 467-483
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activities have had a significant impact on Earth's systems and processes, leading to a transition of Earth's state from the relatively stable Holocene epoch to the Anthropocene. The planetary boundary framework characterizes major risks of destabilization, particularly in the core dimensions of climate and biosphere change. Land system change, including deforestation and urbanization, alters ecosystems and impacts the water and energy cycle between the land surface and atmosphere, while climate change can disrupt the balance of ecosystems and impact vegetation composition and soil carbon pools. These drivers also interact with each other, further exacerbating their impacts. Earth system models have been used recently to illustrate the risks and interacting effects of transgressing selected planetary boundaries, but a detailed analysis is still missing. Here, we study the impacts of long-term transgressions of the climate and land system change boundaries on the Earth system using an Earth system model with an incorporated detailed dynamic vegetation model. In our centennial-scale simulation analysis, we find that transgressing the land system change boundary results in increases in global temperatures and aridity. Furthermore, this transgression is associated with a substantial loss of vegetation carbon, exceeding 200 Pg C, in contrast to conditions considered safe. Concurrently, the influence of climate change becomes evident as temperatures surge by 2.7–3.1 °C depending on the region. Notably, carbon dynamics are most profoundly affected within the large carbon reservoirs of the boreal permafrost areas, where carbon emissions peak at 150 Pg C. While a restoration scenario to reduce human pressure to meet the planetary boundaries of climate change and land system change proves beneficial for carbon pools and global mean temperature, a transgression of these boundaries could lead to profoundly negative effects on the Earth system and the terrestrial biosphere. Our results suggest that respecting both boundaries is essential for safeguarding Holocene-like planetary conditions that characterize a resilient Earth system and are in accordance with the goals of the Paris Climate Agreement.
  •  
4.
  • Gerten, Dieter, et al. (författare)
  • Feeding ten billion people is possible within four terrestrial planetary boundaries
  • 2020
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 3:3, s. 200-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Global agriculture puts heavy pressure on planetary boundaries, posing the challenge to achieve future food security without compromising Earth system resilience. On the basis of process-detailed, spatially explicit representation of four interlinked planetary boundaries (biosphere integrity, land-system change, freshwater use, nitrogen flows) and agricultural systems in an internally consistent model framework, we here show that almost half of current global food production depends on planetary boundary transgressions. Hotspot regions, mainly in Asia, even face simultaneous transgression of multiple underlying local boundaries. If these boundaries were strictly respected, the present food system could provide a balanced diet (2,355 kcal per capita per day) for 3.4 billion people only. However, as we also demonstrate, transformation towards more sustainable production and consumption patterns could support 10.2 billion people within the planetary boundaries analysed. Key prerequisites are spatially redistributed cropland, improved water-nutrient management, food waste reduction and dietary changes. Agriculture transforms the Earth and risks crossing thresholds for a healthy planet. This study finds almost half of current food production crosses such boundaries, as for freshwater use, but that transformation towards more sustainable production and consumption could support 10.2 billion people.
  •  
5.
  • Otto, Ilona M., et al. (författare)
  • Human agency in the Anthropocene
  • 2020
  • Ingår i: Ecological Economics. - : Elsevier BV. - 0921-8009 .- 1873-6106. ; 167
  • Tidskriftsartikel (refereegranskat)abstract
    • The human species has been recognized as a new force that has pushed the Earth's system into a new geological epoch referred to as the Anthropocene. This human influence was not conscious, however, but an unintended effect of the consumption of fossil-fuels over the last 150 years. Do we, humans, have the agency to deliberately influence the fate of our species and the planet we inhabit? The rational choice paradigm that dominated social sciences in the 20th Century, and has heavily influenced the conceptualization of human societies in global human-environmental system modelling in the early 21st Century, suggests a very limited view of human agency. Humans seen as rational agents, coordinated through market forces, have only a very weak influence on the system rules. In this article we explore alternative concepts of human agency that emphasize its collective and strategic dimensions as well as we ask how human agency is distributed within the society. We also explore the concept of social structure as a manifestation of, and a constraint on, human agency. We discuss the implications for conceptualization of human agency in integrated assessment modelling efforts.
  •  
6.
  • Otto, Ilona M., et al. (författare)
  • Social tipping dynamics for stabilizing Earth's climate by 2050
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : The National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:5, s. 2354-2365
  • Tidskriftsartikel (refereegranskat)abstract
    • Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STE5). STE5 are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.
  •  
7.
  • Richardson, Katherine, et al. (författare)
  • Earth beyond six of nine planetary boundaries
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:37
  • Tidskriftsartikel (refereegranskat)abstract
    • This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.
  •  
8.
  • Rockström, Johan, 1965-, et al. (författare)
  • The planetary commons : A new paradigm for safeguarding Earth-regulating systems in the Anthropocene
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 121:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Anthropocene signifies the start of a no-analogue trajectory of the Earth system that is fundamentally different from the Holocene. This new trajectory is characterized by rising risks of triggering irreversible and unmanageable shifts in Earth system functioning. We urgently need a new global approach to safeguard critical Earth system regulating functions more effectively and comprehensively. The global commons framework is the closest example of an existing approach with the aim of governing biophysical systems on Earth upon which the world collectively depends. Derived during stable Holocene conditions, the global commons framework must now evolve in the light of new Anthropocene dynamics. This requires a fundamental shift from a focus only on governing shared resources beyond national jurisdiction, to one that secures critical functions of the Earth system irrespective of national boundaries. We propose a new framework—the planetary commons—which differs from the global commons framework by including not only globally shared geographic regions but also critical biophysical systems that regulate the resilience and state, and therefore livability, on Earth. The new planetary commons should articulate and create comprehensive stewardship obligations through Earth system governance aimed at restoring and strengthening planetary resilience and justice. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy