SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luecken M) srt2:(2023)"

Sökning: WFRF:(Luecken M) > (2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almet, A, et al. (författare)
  • A roadmap for the human skin cell atlas
  • 2023
  • Ingår i: JOURNAL OF INVESTIGATIVE DERMATOLOGY. - 0022-202X. ; 143:9, s. B10-B10
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Almet, Axel A., et al. (författare)
  • A Roadmap for a Consensus Human Skin Cell Atlas and Single-Cell Data Standardization
  • 2023
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier. - 0022-202X .- 1523-1747. ; 143:9, s. 1667-1677
  • Forskningsöversikt (refereegranskat)abstract
    • Single-cell technologies have become essential to driving discovery in both basic and translational investigative dermatology. Despite the multitude of available datasets, a central reference atlas of normal human skin, which can serve as a reference resource for skin cell types, cell states, and their molecular signatures, is still lacking. For any such atlas to receive broad acceptance, participation by many investigators during atlas construction is an essential prerequisite. As part of the Human Cell Atlas project, we have assembled a Skin Biological Network to build a consensus Human Skin Cell Atlas and outline a roadmap toward that goal. We define the drivers of skin diversity to be considered when selecting sequencing datasets for the atlas and list practical hurdles during skin sampling that can result in data gaps and impede comprehensive representation and technical considerations for tissue processing and computational analysis, the accounting for which should minimize biases in cell type enrichments and exclusions and decrease batch effects. By outlining our goals for Atlas 1.0, we discuss how it will uncover new aspects of skin biology.
  •  
3.
  •  
4.
  • Sikkema, Lisa, et al. (författare)
  • An integrated cell atlas of the lung in health and disease
  • 2023
  • Ingår i: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 29:6, s. 1563-1577
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1 + profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
  •  
5.
  •  
6.
  • Schmidt, Sebastian, et al. (författare)
  • A reversible state of hypometabolism in a human cellular model of sporadic Parkinson's disease
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sporadic Parkinson's Disease (sPD) is a progressive neurodegenerative disorder caused by multiple genetic and environmental factors. Mitochondrial dysfunction is one contributing factor, but its role at different stages of disease progression is not fully understood. Here, we showed that neural precursor cells and dopaminergic neurons derived from induced pluripotent stem cells (hiPSCs) from sPD patients exhibited a hypometabolism. Further analysis based on transcriptomics, proteomics, and metabolomics identified the citric acid cycle, specifically the alpha-ketoglutarate dehydrogenase complex (OGDHC), as bottleneck in sPD metabolism. A follow-up study of the patients approximately 10 years after initial biopsy demonstrated a correlation between OGDHC activity in our cellular model and the disease progression. In addition, the alterations in cellular metabolism observed in our cellular model were restored by interfering with the enhanced SHH signal transduction in sPD. Thus, inhibiting overactive SHH signaling may have potential as neuroprotective therapy during early stages of sPD. Mitochondrial dysfunction is a contributing factor in Parkinson's disease. Here the authors carry out a multilayered omics analysis of Parkinson's disease patient-derived neuronal cells, which reveals a reversible hypometabolism mediated by alpha-ketoglutarate dehydrogenase deficiency, which is correlated with disease progression in the donating patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy