SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lukes J) srt2:(2020-2023)"

Sökning: WFRF:(Lukes J) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Horacek, J., et al. (författare)
  • ELM temperature in JET and COMPASS tokamak divertors
  • 2023
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 63:5, s. 056007-
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the divertor edge localized mode (ELM) electron temperature at a uniquely high temporal resolution (10(-5) s) was reported at the JET tokamak (Guillemaut et al 2018 Nucl. Fusion 58 066006). By collecting divertor probe data obtained during many dozens of ELMs, the conditional-average (CAV) technique yields surprisingly low peak electron temperatures, far below the pedestal ones (70%-99% reduction!) which we, however, question. This result was interpreted through the collisional free-streaming kinetic model of ELMs, by a transfer of most of the electron energy to ions, implying a high tungsten sputtering for unmitigated ELMs in future fusion devices like ITER. Recently, direct microsecond temperature measurements on the COMPASS tokamak, however, showed that the electron temperature peak of ELM filaments measured in the divertor is reduced by less than a third with respect to the pedestal one. This was further confirmed by a dedicated 1D particle-in-cell (PIC) simulation and tends to prove that the pedestal electrons can transfer only their parallel energy to ions (due to low collisionality), thus less than a third, as is predicted by the collisionless free-streaming model. This finding strongly contradicts the JET observations. We have therefore compared the CAV to the direct (microsecond) ball-pen and Langmuir probes measurements in COMPASS and found very good agreement between them. Revisiting the aforementioned JET CAV analysis indeed shows that the electron temperatures are much higher than previously reported, close to those predicted by the PIC simulation, and thus the ion energy seems to not significantly increase in the scrape-off layer.
  •  
3.
  • Forzieri, Giovanni, et al. (författare)
  • The Database of European Forest Insect and Disease Disturbances: DEFID2
  • 2023
  • Ingår i: Global Change Biology. - 1365-2486. ; 29:21, s. 6040-6065
  • Tidskriftsartikel (refereegranskat)abstract
    • Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water flows, wood production, protection of soils, and the conservation of biodiversity, could be increasingly compromised. Despite the relevance of these detrimental effects, there are currently no spatially detailed databases that record insect and disease disturbances on forests at the pan-European scale. Here, we present the new Database of European Forest Insect and Disease Disturbances (DEFID2). It comprises over 650,000 harmonized georeferenced records, mapped as polygons or points, of insects and disease disturbances that occurred between 1963 and 2021 in European forests. The records currently span eight different countries and were acquired through diverse methods (e.g., ground surveys, remote sensing techniques). The records in DEFID2 are described by a set of qualitative attributes, including severity and patterns of damage symptoms, agents, host tree species, climate-driven trigger factors, silvicultural practices, and eventual sanitary interventions. They are further complemented with a satellite-based quantitative characterization of the affected forest areas based on Landsat Normalized Burn Ratio time series, and damage metrics derived from them using the LandTrendr spectral–temporal segmentation algorithm (including onset, duration, magnitude, and rate of the disturbance), and possible interactions with windthrow and wildfire events. The DEFID2 database is a novel resource for many large-scale applications dealing with biotic disturbances. It offers a unique contribution to design networks of experiments, improve our understanding of ecological processes underlying biotic forest disturbances, monitor their dynamics, and enhance their representation in land-climate models. Further data sharing is encouraged to extend and improve the DEFID2 database continuously. The database is freely available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/FOREST/DISTURBANCES/DEFID2/.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy