SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lundén Karl) srt2:(2015-2019)"

Sökning: WFRF:(Lundén Karl) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andersson Sundén, Erik, et al. (författare)
  • Citizen Science and Radioactivity
  • 2019
  • Ingår i: Nuclear Physics News. - : Informa UK Limited. - 1050-6896 .- 1061-9127 .- 1931-7336. ; 29:2, s. 25-28
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
3.
  • Chen, Zhi‑Qiang, et al. (författare)
  • Early selection for resistance to Heterobasidion parviporum in Norway spruce is not likely to adversely affect growth and wood quality traits in late-age performance
  • 2018
  • Ingår i: European Journal of Forest Research. - : Springer Science and Business Media LLC. - 1612-4669 .- 1612-4677. ; 137:4, s. 517-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Infections with Heterobasidion parviporum devalue the Norway spruce timber as the decayed wood does not meet the necessary quality requirements for sawing. To evaluate the incorporation of disease resistance in the Norway spruce breeding strategy, an inoculation experiment with H. parviporum on 2-year-old progenies of 466 open-pollinated families was conducted under greenhouse (nursery) conditions. Lesion length in the phloem (LL), fungal growth in sapwood (FG) and growth (D) were measured on an average of 10 seedlings for each family. The genetic variation and genetic correlations between both LL, FG and growth in the nursery trial and wood quality traits measured previously from 21-year old trees in two progeny trials, including solid-wood quality traits (wood density, and modulus of elasticity) and fiber properties traits (radial fiber width, tangential fiber width, fiber wall thickness, fiber coarseness, microfibril angle and fiber length). For both LL and FG, large coefficients of phenotypic variation (> 26%) and genetic variation (> 46%) were detected. Heritabilities of LL and FG were 0.33 and 0.42, respectively. We found no significant correlations between wood quality traits and growth in the field progeny trials with neither LL nor FG in the nursery trial. Our data suggest that the genetic gains may reach 41 and 52% from mass selection by LL and FG, respectively. Early selection for resistance to H. parviporum based on assessments of fungal spread in the sapwood in nursery material, FG, will not adversely affect growth and wood quality traits in late-age performance. 
  •  
4.
  • Dalman, Kerstin, et al. (författare)
  • Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development
  • 2017
  • Ingår i: BMC Plant Biology. - : BioMed Central. - 1471-2229. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NAC family of transcription factors is one of the largest gene families of transcription factors in plants and the conifer NAC gene family is at least as large, or possibly larger, as in Arabidopsis. These transcription factors control both developmental and stress induced processes in plants. Yet, conifer NACs controlling stress induced processes has received relatively little attention. This study investigates NAC family transcription factors involved in the responses to the pathogen Heterobasidion annosum (Fr.) Bref. sensu lato. Results: The phylogeny and domain structure in the NAC proteins can be used to organize functional specificities, several well characterized stress-related NAC proteins are found in III-3 in Arabidopsis (Jensen et al. Biochem J 426: 183-196, 2010). The Norway spruce genome contain seven genes with similarity to subgroup III-3 NACs. Based on the expression pattern PaNAC03 was selected for detailed analyses. Norway spruce lines overexpressing PaNAC03 exhibited aberrant embryo development in response to maturation initiation and 482 misregulated genes were identified in proliferating cultures. Three key genes in the flavonoid biosynthesis pathway: a CHS, a F3'H and PaLAR3 were consistently down regulated in the overexpression lines. In accordance, the overexpression lines showed reduced levels of specific flavonoids, suggesting that PaNAC03 act as a repressor of this pathway, possibly by directly interacting with the promoter of the repressed genes. However, transactivation studies of PaNAC03 and PaLAR3 in Nicotiana benthamiana showed that PaNAC03 activated PaLAR3A, suggesting that PaNAC03 does not act as an independent negative regulator of flavan-3-ol production through direct interaction with the target flavonoid biosynthetic genes. Conclusions: PaNAC03 and its orthologs form a sister group to well characterized stress-related angiosperm NAC genes and at least PaNAC03 is responsive to biotic stress and appear to act in the control of defence associated secondary metabolite production.
  •  
5.
  • Lundén, Karl, et al. (författare)
  • Transcriptional Responses Associated with Virulence and Defence in the Interaction between Heterobasidion annosum s. s. and Norway Spruce
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterobasidion annosum sensu lato is a serious pathogen causing root and stem rot to conifers in the northern hemisphere and rendering the timber defective for sawing and pulping. In this study we applied next-generation sequencing to i) identify transcriptional responses unique to Heterobasidion-inoculated Norway spruce and ii) investigate the H. annosum transcripts to identify putative virulence factors. To address these objectives we wounded or inoculated 30-year-old Norway spruce clones with H. annosumand 454-sequenced the transcriptome of the interaction at 0, 5 and 15 days post inoculation. The 491860 high-quality reads were de novo assembled and the relative expression was analysed. Overall, very few H. annosum transcripts were represented in our dataset. Three delta-12 fatty acid desaturase transcripts and one Clavaminate synthase-like transcript, both associated with virulence in other pathosystems, were found among the significantly induced transcripts. The analysis of the Norway spruce transcriptional responses produced a handful of differentially expressed transcripts. Most of these transcripts originated from genes known to respond to H. annosum. However, three genes that had not previously been reported to respond to H. annosum showed specific induction to inoculation: an oxophytodienoic acid-reductase (OPR), a beta-glucosidaseand a germin-like protein (GLP2) gene. Even in a small data set like ours, five novel highly expressed Norway spruce transcripts without significant alignment to any previously annotated protein in Genbank but present in the P. abies (v1.0) gene catalogue were identified. Their expression pattern suggests a role in defence. Therefore a more complete survey of the transcriptional responses in the interactions between Norway spruce and its major pathogen H. annosumwould probably provide a better understanding of gymnosperm defence than accumulated until now.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy