SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lundin Angelica 1971) srt2:(2007)"

Sökning: WFRF:(Lundin Angelica 1971) > (2007)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lundin, Angelica, 1971, et al. (författare)
  • A mechanistic investigation of ethylene oxide hydrolysis to ethanediol
  • 2007
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 111:37, s. 9087-9092
  • Tidskriftsartikel (refereegranskat)abstract
    • The B3LYP/6-311 +G(d,p) description is employed to study the heterolytic ring opening mechanisms under microsolvation conditions for ethylene oxide in acidic, neutral, and alkaline environments. In acid and alkaline media, a concerted trans S(N)2 reaction is strongly favored as compared to the corresponding cis reaction. The importance of the nucleophile, water in acidic media and hydroxide ion in alkaline media, for lowering the activation enthalpy is emphasized and activation energies of similar to 80 and similar to 60 kJ mol(-1) are obtained under acid and alkaline conditions, respectively. Under neutral conditions, the trans SN2 mechanism becomes inaccessible because it invokes the formation of a transient HI and OH- pair across the 1,2-ethanediol molecule. Rather, epoxide ring opening is achieved by hydrolysis of a single water molecule. The latter mechanism displays significantly greater activation enthaply (205 kJ mol(-1)) than those in acid and alkaline environments. This is in agreement with experiment. Product distributions of simple olefins in neutral aqueous media, as well as the detrimental impact of acid/base conditions for the selectivity of epoxidation catalysts in aqueous media, are discussed.
  •  
2.
  • Lundin, Angelica, 1971, et al. (författare)
  • Quantum chemical Modeling of ethene epoxidation with hydrogen peroxide: The effect of microsolvation with water
  • 2007
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 111, s. 9080-9086
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum chemical calculations were performed to study the mechanism of ethene epoxidation with hydrogen peroxide. The calculations were carried out at the B3LYP/6-311+G(d,p) level of theory. The applicability of this functional to the problem at hand, including basis set effects, was validated by CCSD(T) and CASSCF based multireference MP2 calculations. A mechanism was determined where hydrogen peroxide becomes polarized in the transition state upon binding to the ethene molecule. The distant hydroxide fragment of the attached hydrogen peroxide molecule becomes partly negatively charged, while the other part of the molecule involves a proton and becomes partly positively charged. In the absence of water an activation energy of 139.7 kJ mol(-1) was determined for the isolated H2O2 + C2H4 system. By microsolvating with water, the impact of a hydrogen-bonded network on the activation energy was addressed. A 43.7 kJ mol(-1) lowering of the activation energy, Delta E-a, was observed when including up to 4 water molecules in the model. This effect results from the stabilization of the proton and hydroxide fragments in the transition state. The findings are discussed in the context of previous theoretical studies on similar systems. Effects of adding or removing a proton to mimic acidic and alkaline conditions are addressed and the limitations of the model in solvating the excess charge are discussed.
  •  
3.
  • Lundin, Angelica, 1971, et al. (författare)
  • Quantum chemical modelling of ethene epoxidation with hydrogen peroxide—role of catalytic sites
  • 2007
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 9:45, s. 5997-6003
  • Tidskriftsartikel (refereegranskat)abstract
    • Ethene epoxidation with hydrogen peroxide was studied on hydroxylated binuclear metal sites, using DFT calculations at the B3LYP/6-311+G(d,p) level of theory. A decrease of the activation enthalpy of 100 kJ mol–1 was observed compared to the gas phase reaction between hydrogen peroxide and ethene. It was previously shown that micro-solvation with water reduces the activation enthalpy by 77 kJ mol–1 and only the additional 24 kJ mol–1 can be attributed to the binuclear site. Three different metal centres were tested, Ti(IV), Si(IV) and Ge(IV), in order to investigate any specific role of the metal centre on the activation enthalpy. The results clearly show that the activation enthalpy is independent on the nature of the metal centre. This emphasises the role of the hydrogen bonded network provided by the hydroxylated metal sites, on the stabilisation of the transitions state. In ref. 1 (A. Lundin, I. Panas and E. Ahlberg, J. Phys. Chem. A, 2007, 111, 9080) it was demonstrated that, at the transition state and upon micro-solvation, the hydrogen peroxide entity becomes polarized within the hydrogen bonding network, forming a negatively-charged fragment distant from the ethene molecule and a positively-charged fragment directly involved in the oxygen insertion step. The same mechanism was found to hold also for the reaction at the binuclear catalytic site, since the required hydrogen bonding is effectively provided by the hydroxylated metal centres. This mechanism is compared to the two-step pathway which employs a metal peroxide intermediate. Both reaction channels were found to be plausible in confined environments.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy